Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Automatic assessment of sleep apnea/ hypopnea syndrome (SAHS) based on fewer physiological signals is critical for the success of healthcare at home. However, previous studies that use such settings only achieve a lower assessment accuracy, causing fewer syndromes to be separated for effective diagnosis. This paper presents a 3-stage support vector machines (SVM)-based algorithm for SAHS assessment using a single-channel nasal pressure (NP) signal. In this work, NP signal is utilized for feature extraction. Amplitude features, as well as those extracted using discrete Fourier transform and discrete wavelet transform, are used for machine learning. A total of 58 sets of polysomnography recordings, each with approximately 7 h in duration, were analyzed. This work achieves a sensitivity of 95.7% and a positive predictive value of 90.9%, outperforming previous works using NP signal. Compared with prior studies using only SpO2 signal, this work still achieves better performance and supports more classification levels. Thanks to the low-complexity settings based only on the NP signal, the proposed approach provides a promising solution to SAHS assessment for remote healthcare.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2022.3199454 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!