The mainstream of image and sentence matching studies currently focuses on fine-grained alignment of image regions and sentence words. However, these methods miss a crucial fact: the correspondence between images and sentences does not simply come from alignments between individual regions and words but from alignments between the phrases they form respectively. In this work, we propose a novel Decoupled Cross-modal Phrase-Attention network (DCPA) for image-sentence matching by modeling the relationships between textual phrases and visual phrases. Furthermore, we design a novel decoupled manner for training and inferencing, which is able to release the trade-off for bi-directional retrieval, where image-to-sentence matching is executed in textual semantic space and sentence-to-image matching is executed in visual semantic space. Extensive experimental results on Flickr30K and MS-COCO demonstrate that the proposed method outperforms state-of-the-art methods by a large margin, and can compete with some methods introducing external knowledge.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2022.3197972DOI Listing

Publication Analysis

Top Keywords

decoupled cross-modal
8
cross-modal phrase-attention
8
phrase-attention network
8
image-sentence matching
8
novel decoupled
8
matching executed
8
semantic space
8
matching
5
network image-sentence
4
matching mainstream
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!