Background: Neurosurgical indications and interventions provided in the management of spasticity have evolved significantly over time. Selective dorsal rhizotomy (SDR) and intrathecal baclofen (ITB) pumps have been used to improve mobility, reduce lower extremity spasticity, and increase quality of life in patients with various diagnoses.

Methods: Studies describing ITB and SDR outcomes in adult and pediatric patients were identified from Medline and Embase databases. Only publications between January 1990 to January 2021 were included. Combinations of search terms 'Selective Dorsal Rhizotomy', 'Selective Posterior Rhizotomy', 'functional posterior rhizotomy', 'intrathecal baclofen pump', and 'spasticity' were used. Only studies in English language and those that included parameters for lower extremity outcome (i.e., spasticity, ambulation) were included. Only studies describing follow-up 12 months or greater were included. Case reports, reviews without primary data, or inaccessible publications were excluded.

Results: Two hundred and ninety publications between January 1990 to January 2021 were identified. Of these, 62 fit inclusion and exclusion criteria for a total of 1291 adult and 2263 patients. Etiologies in adult and pediatric populations varied substantially with multiple sclerosis, cerebral palsy, and trauma comprising the majority of causes for spasticity in adult patients. In pediatric patients, cerebral palsy was the predominant etiology of spasticity. While outcomes after SDR and ITB varied, both are effective for long-term tone reduction. SDR appeared to have a greater effect on function compared to baseline when comparing relatively similar subgroups. The complication rates for either intervention were significant; ITB had a much greater incidence of wound and hardware adverse events, whereas SDR was associated with a not insignificant incidence of new bladder or sensory deficit.

Conclusion: ITB and SDR have demonstrated efficacy and utility for tone reduction in a variety of conditions. The selection of a specific intervention may have a variety of determining features including the etiology of spasticity, age of patient, as well as balancing benefit and complication profiles of each technique. Appropriate patient selection is essential for providing optimal patient outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-030-99166-1_13DOI Listing

Publication Analysis

Top Keywords

selective dorsal
8
dorsal rhizotomy
8
intrathecal baclofen
8
management spasticity
8
lower extremity
8
studies describing
8
itb sdr
8
adult pediatric
8
pediatric patients
8
publications january
8

Similar Publications

The cystic artery is a critical anatomical landmark in both laparoscopic and open cholecystectomy. This report presents a unique case involving two rare anatomical variations: double cystic arteries, along with a superficial branch originating from the superior mesenteric artery (SMA) - a previously unreported combination with significant clinical and surgical implications. Unlike earlier studies, this research provides detailed anatomical and embryological insights supported by high-quality imaging and illustrations to guide surgeons in recognizing and managing this novel variation.

View Article and Find Full Text PDF

GABA receptor (GABAR) activation is known to alleviate pain by reducing neuronal excitability, primarily through inhibition of high voltage-activated (HVA) calcium (Ca2.2) channels and potentiating G protein-coupled inwardly rectifying potassium (GIRK) channels. Although the analgesic properties of small molecules and peptides have been primarily tested on isolated murine dorsal root ganglion (DRG) neurons, emerging strategies to develop, study, and characterise human pluripotent stem cell (hPSC)-derived sensory neurons present a promising alternative.

View Article and Find Full Text PDF

Humans adjust their movement to changing environments effortlessly via multisensory integration of the effector's state, motor commands, and sensory feedback. It is postulated that frontoparietal (FP) networks are involved in the control of prehension, with dorsomedial (DM) and dorsolateral (DL) regions processing the reach and the grasp, respectively. This study tested (5F, 5M participants) the differential involvement of FP nodes (ventral premotor cortex - PMv, dorsal premotor cortex - PMd, anterior intraparietal sulcus - aIPS, and anterior superior parietal-occipital cortex - aSPOC) in online adjustments of reach-to-grasp coordination to mechanical perturbations that disrupted arm transport.

View Article and Find Full Text PDF

Scaling of ventral hippocampal activity during anxiety.

J Neurosci

January 2025

Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland.

The hippocampus supports a multiplicity of functions, with the dorsal region contributing to spatial representations and memory, and the ventral hippocampus (vH) being primarily involved in emotional processing. While spatial encoding has been extensively investigated, how the vH activity is tuned to emotional states, e.g.

View Article and Find Full Text PDF

Pharmacological modulation of Sigma-1 receptor ameliorates pathological neuroinflammation in rats with diabetic neuropathic pain via the AKT/GSK-3β/NF-κB pathway.

Brain Res Bull

January 2025

Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China. Electronic address:

Diabetic neuropathic pain (DNP) is a common complication of diabetes mellitus (DM) and is characterized by spontaneous pain and neuroinflammation. The Sigma-1 receptor (Sig-1R) has been proposed as a target for analgesic development. It is an important receptor with anti-inflammatory properties and has been found to regulate DNP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!