Background: Infections are among the main causes of death in patients with demyelinating diseases of the central nervous system (CNSDD). Vaccines are effective methods in reducing hospitalization and death from infectious diseases, but they are challenging in patients with CNSDD because of autoimmunity and immunosuppression.
Objectives: To summarize the pathophysiological rationale and main evidence for vaccine recommendations in patients with CNSDD.
Methods: Specialists with different backgrounds on the subject: a neurologist specialized in demyelinating diseases, an infectious diseases specialist and an immunologist, presented a critical narrative review of vaccination literature in patients with CNSDD, highlighting which vaccines should or should not be administered and the best time for it.
Results: Patients with DDSNC are at increased risk of vaccine-preventable viral and bacterial infections. Vaccines can prevent herpes zoster, hepatitis B reactivation, HPV-associated warts and tumors, viral and bacterial pneumonia, and meningitis. Live attenuated virus vaccines should not be used when the patient is on immunosuppression. Vaccines should be avoided during relapses. The greatest vaccine efficacy is given before treatment or at the end of medication.
Conclusion: Patients with DDSNC need differentiated immunization in relation to additional vaccines, contraindicated vaccines and timing of vaccination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491426 | PMC |
http://dx.doi.org/10.1590/0004-282X-ANP-2022-S121 | DOI Listing |
BMC Neurol
January 2025
Department of Radiology, School of Medicine, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Teferi, Ethiopia.
Background: Malaria is an infectious disease caused by Plasmodium parasites, transmitted to humans by infected female Anopheles mosquitoes. Five Plasmodium species infect humans: P. vivax, P.
View Article and Find Full Text PDFLancet Neurol
February 2025
Department of Neurology, International University of Health and Welfare, Narita, Japan.
Background: Evidence from preclinical studies suggests that IL-6 signalling has the potential to modulate immunopathogenic mechanisms upstream of autoantibody effector mechanisms in patients with generalised myasthenia gravis. We aimed to assess the safety and efficacy of satralizumab, a humanised monoclonal antibody targeting the IL-6 receptor, in patients with generalised myasthenia gravis.
Methods: LUMINESCE was a randomised, double-blind, placebo-controlled, multicentre, phase 3 study at 105 sites, including hospitals and clinics, globally.
Front Biosci (Landmark Ed)
January 2025
The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy.
The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.
View Article and Find Full Text PDFMult Scler
January 2025
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Testing for myelin oligodendrocyte glycoprotein immunoglobulin G antibodies (MOG-IgG) is essential to the diagnosis of MOG antibody-associated disease (MOGAD). Due to its central role in the evaluation of suspected inflammatory demyelinating disease, the last 5 years has been marked by an abundance of research into MOG-IgG testing ranging from appropriate patient selection, to assay performance, to utility of serum titers as well as cerebrospinal fluid (CSF) testing. In this review, we synthesize current knowledge pertaining to the "who, what, where, when, why, and how" of MOG-IgG testing, with the aim of facilitating accurate MOGAD diagnosis in clinical practice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!