The dominant hole transport material (HTM) in state-of-the-art perovskite solar cells (PSCs) is Spiro-OMeTAD, which needs to be doped using hydrophilic dopants to improve its hole mobility and conductivity, resulting in inferior device stability. Here, we propose an effective molecular design strategy to construct dopant-free polymer HTMs by selecting four structurally related polymers and investigating their structure-property relationship. It is found that the donor and acceptor units with longitudinal conjugate extension, such as BDT-T and BDD, could not only enhance the planarity of the conjugated polymer backbone and tune the energy levels but also promote the face-on orientation, resulting in superior charge extraction and transport. The optimized device utilizing dopant-free polymer HTM shows a high open-circuit voltage of 1.19 V and a champion efficiency of 24.04 % with greatly improved operational stability, making it among the best performance PSCs based on dopant-free HTMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202210356 | DOI Listing |
Small
December 2024
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China.
Despite the remarkable advancements in perovskite light-emitting diode (PeLED) technology, the development of blue PeLEDs has lagged. The primary bottleneck lies in the difficulty of finding hole transport materials (HTMs) that can both match the energy levels of blue perovskite materials and exhibit efficient hole transport performance. Herein, a novel non-conjugated polyethylene carbazole-based polymer (P-AGCz) is developed that has excellent solution processability and serves as an efficient dopant-free HTM for PeLEDs.
View Article and Find Full Text PDFTop Curr Chem (Cham)
June 2024
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
Angew Chem Int Ed Engl
June 2024
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
Open-shell conjugated polymers with a high intrinsic conductivity and high-spin ground state hold considerable promise for applications in organic electronics and spintronics. Herein, two novel acceptor-acceptor (A-A) conjugated polymers based on a highly electron-deficient quinoidal benzodifurandione unit have been developed, namely DPP-BFDO-Th and DPP-BFDO. The incorporation of the quinoidal moiety into the polymers backbones enables deeply aligned lower-lying lowest unoccupied molecular orbital (LUMO) levels of below -4.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2024
Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
Nat Commun
March 2024
National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, PR China.
The development of a robust quasi-ohmic contact with minimal resistance, good stability and cost-effectiveness is crucial for perovskite solar cells. We introduce a generic approach featuring a Lewis-acid layer sandwiched between dopant-free semicrystalline polymer and metal electrode in perovskite solar cells, resulting in an ideal quasi-ohmic contact even at elevated temperature up to 85 °C. The solubility of Lewis acid in alcohol facilitates nondestructive solution processing on top of polymer, which boosts hole injection from polymer into metal by two orders of magnitude.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!