Swine acute diarrhea syndrome coronavirus (SADS-CoV) was reported in China in 2017 and is a causative agent of porcine enteric disease. Recent studies indicate that cells from various hosts are susceptible to SADS-CoV, suggesting the zoonotic potential of this virus. However, little is known about the mechanisms through which this virus enters cells. In this study, we investigated the role of furin in SADS-CoV spike (S)-mediated cell - cell fusion and entry. We found that the SADS-CoV S protein induced the fusion of various cells. Cell - cell fusion was inhibited by the proprotein convertase inhibitor dec-RVKR-cmk, and between cells transfected with mutant S proteins resistant to furin cleavage. These findings revealed that furin-induced cleavage of the SADS-CoV S protein is required for cell - cell fusion. Using mutagenesis analysis, we demonstrated that furin cleaves the SADS-CoV S protein near the S1/S2 cleavage site, RYVR and AVRR. We used pseudotyped viruses to determine whether furin-induced S cleavage is also required for viral entry. Pseudotyped viruses expressing S proteins with a mutated furin cleavage site could be transduced into target cells, indicating that furin-induced cleavage is not required for pseudotyped virus entry. Our data indicate that S cleavage is critical for SADS-CoV S-mediated cell - cell fusion and suggest that furin might be a host target for SADS-CoV antivirals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518401 | PMC |
http://dx.doi.org/10.1080/22221751.2022.2114850 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, PR China.
A clinical isolate, R131, was isolated from the peritoneal swab of a patient who suffered from ruptured appendicitis with abscess and gangrene in Hong Kong in 2018. Cells are facultatively anaerobic, non-motile, Gram-positive coccobacilli. Colonies were small, grey, semi-translucent, low convex and alpha-haemolytic.
View Article and Find Full Text PDFJ Med Chem
January 2025
School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery.
View Article and Find Full Text PDFChem Biodivers
January 2025
St Xavier's College, Kolkata, Department of Chemistry, 30, Mother teresa Sarani, Kol-16, 700016, Kolkata, INDIA.
Amino-quinolines are potential candidates that may provide some insight into the current chemotherapeutic research due to their demonstrated anti-cancer activity. This led us to synthesize and explore a new amino-azo-quinoline ligand H2L 1 and its square planar nickel(II) complexes [Ni(HL)(OAc)], 2 and [Ni(HL)Cl], 3 and the structures were determined by SCXRD. Theoretical investigation of redox orbitals of the complexes discloses that the reduction process is due to ligand reduction whereas both metal and ligand are contributing towards oxidation.
View Article and Find Full Text PDFBackground: Age-related macular degeneration (AMD), a condition of multifactorial origin, is a major cause of irreversible vision loss in industrialized countries. The dry late stage of the disease, known as geographic atrophy (GA), is characterized by progressive loss of photoreceptor cells and retinal pigment epithelial cells in the central retina. An estimated 300 000 to 550 000 people in Germany suffer from GA.
View Article and Find Full Text PDFMol Cancer Res
January 2025
Fox Chase Cancer Center, Philadelphia, PA, United States.
Breast cancers of the IntClust-2 type, characterized by amplification of a small portion of chromosome 11, have a median survival of only five years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study we used a gene editing method to knock out, one by one, each of 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!