In the footsteps of sea stars: deciphering the catalogue of proteins involved in underwater temporary adhesion.

Open Biol

Institute of Zoology and Center of Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Technikerstr. 25, Innsbruck 6020, Austria.

Published: August 2022

Sea stars adhere strongly but temporarily to underwater substrata via the secretion of a blend of proteins, forming an adhesive footprint that they leave on the surface after detachment. Their tube feet enclose a duo-gland adhesive system comprising two types of adhesive cells, contributing different layers of the footprint and de-adhesive cells. In this study, we characterized the catalogue of sea star footprint proteins (Sfps) in the species to gain insights in their potential function. We identified 16 Sfps and mapped their expression to type 1 and/or type 2 adhesive cells or to de-adhesive cells by double fluorescent hybridization. Based on their cellular expression pattern and their conserved functional domains, we propose that the identified Sfps serve different functions during attachment, with two Sfps coupling to the surface, six providing cohesive strength and the rest forming a binding matrix. Immunolabelling of footprints with antibodies directed against one protein of each category confirmed these roles. A de-adhesive gland cell-specific astacin-like proteinase presumably weakens the bond between the adhesive material and the tube foot surface during detachment. Overall, we provide a model for temporary adhesion in sea stars, including a comprehensive list of the proteins involved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382459PMC
http://dx.doi.org/10.1098/rsob.220103DOI Listing

Publication Analysis

Top Keywords

sea stars
12
proteins involved
8
temporary adhesion
8
adhesion sea
8
surface detachment
8
adhesive cells
8
de-adhesive cells
8
identified sfps
8
adhesive
5
footsteps sea
4

Similar Publications

Sex determination systems are diverse in echinoderms, however, our understanding is still very limited in this research field, especially for Asteroidea species. The northern Pacific seastar, Asterias amurensis, has attracted widespread concern due to its population outbreaks and high-risk invasions. Using whole-genome re-sequencing data from 40 females and 40 males, we identified a candidate sex determination region in A.

View Article and Find Full Text PDF

We compared referrals and connection to care between perinatal patients: 90 receiving OB/GYN care in clinics with integrated behavioral health consultants with infant mental health specialization (IMH-BHC), and 68 receiving traditional care, in the United States. Participants identified as: Native American/Alaskan native, 1.90%; Asian, .

View Article and Find Full Text PDF

Recycling of Uridylated mRNAs in Starfish Embryos.

Biomolecules

December 2024

Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan.

In eukaryotes, mRNAs with long poly(A) tails are translationally active, but deadenylation and uridylation of these tails generally cause mRNA degradation. However, the fate of uridylated mRNAs that are not degraded quickly remains obscure. Here, using tail-seq and microinjection of the 3' region of mRNA, we report that some mRNAs in starfish are re-polyadenylated to be translationally active after deadenylation and uridylation.

View Article and Find Full Text PDF

The timing of metamorphosis and settlement is critical for the survival and reproductive success of marine animals with biphasic life cycles. Thyroid hormones (THs) regulate developmental timing in diverse groups of chordates, including the regulation of metamorphosis in amphibians, teleosts, lancelets, tunicates, and lampreys. Recent evidence suggests a role for TH regulation of metamorphosis outside of the chordates, including echinoderms, annelids, and molluscs.

View Article and Find Full Text PDF

Identification of the arachidonic acid 5-lipoxygenase and its function in the immunity of Apostichopus japonicus.

Fish Shellfish Immunol

December 2024

Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China; Dalian Jinshiwan Laboratory, Dalian, PR China. Electronic address:

A number of studies have been demonstrated that arachidonate 5-lipoxygenase (ALOX-5) plays a role in regulating a range of physiological and pathological processes through the catalysis of leukotriene formation from arachidonic acid (ARA). The coding sequence of ALOX-5 from Apostichopus japonicus (Aj-ALOX-5) was successfully amplified, resulting in a 2028 bp ORF sequence that encodes 674 amino acids. A comparison of the amino acid sequence with those of other 5-lipoxygenases revealed that Aj-ALOX-5 has the N-terminal "PLAT domain" and C-terminal "lipoxygenase structural domain" characteristic of this enzyme family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!