Background: It is controversial whether angiotensin-converting enzyme inhibitors or angiotensin receptor blockers (ACEI/ARB) have a potentially beneficial role in the respiratory system. This study investigated the association between ACEI/ARB medications and respiratory-related mortality in hypertensive patients in a real-world nationally representative cohort.

Methods: This was a retrospective analysis based on a prospective cohort study. A total of 10,530 patients with hypertension aged ≥ 20 years were included. The data was extracted from the US National Health and Nutrition Examination Survey during 1988-1994 and 1999-2006. The study was approved by the Institutional Review Boards. Moreover, inform concent was taken form all the participants.

Results: Overall, 27.7% ( = 2920) patients took ACEI/ARB agents. During a median follow-up of 12.4 years, 278 individuals died of respiratory disease, including chronic lower respiratory disease ( = 155) and influenza or pneumonia ( = 123). Compared with the patients without ACEI/ARB use, those taking ACEI/ARB were not associated with respiratory-specific mortality in a multivariable-adjusted Cox model. After 1: 1 matching, taking ACEI/ARB was also not related to respiratory mortality (Hazard ratio (HR) = 1.07, 95% CI: 0.79-1.43), influenza- or pneumonia-related (HR = 1.00, 95% CI: 0.65-1.54) and chronic pulmonary mortality (HR = 1.13, 95% CI: 0.75-1.69). After separating ACEI and ARB from anti-hypertensive medications, those associations remained unchanged.

Conclusions: We discovered no significant link between ACEI or ARB medication and pulmonary-related mortality in hypertensive patients. In hypertensive patients, standard ACEI/ARB administration may have little effect on the respiratory system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361161PMC
http://dx.doi.org/10.11909/j.issn.1671-5411.2022.07.003DOI Listing

Publication Analysis

Top Keywords

respiratory disease
12
hypertensive patients
12
chronic lower
8
lower respiratory
8
patients hypertension
8
respiratory system
8
mortality hypertensive
8
patients acei/arb
8
acei arb
8
patients
7

Similar Publications

Ventilation and features of the lung environment dynamically alter modeled intrapulmonary aerosol exposure from inhaled electronic cigarettes.

Sci Rep

December 2024

Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1690, USA.

Electronic cigarettes (e-cigs) fundamentally differ from tobacco cigarettes in their generation of liquid-based aerosols. Investigating how e-cig aerosols behave when inhaled into the dynamic environment of the lung is important for understanding vaping-related exposure and toxicity. A ventilated artificial lung model was developed to replicate the ventilatory and environmental features of the human lung and study their impact on the characteristics of inhaled e-cig aerosols from simulated vaping scenarios.

View Article and Find Full Text PDF

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

In this article, a nonlinear fractional bi-susceptible [Formula: see text] model is developed to mathematically study the deadly Coronavirus disease (Covid-19), employing the Atangana-Baleanu derivative in Caputo sense (ABC). A more profound comprehension of the system's intricate dynamics using fractional-order derivative is explored as the primary focus of constructing this model. The fundamental properties such as positivity and boundedness, of an epidemic model have been proven, ensuring that the model accurately reflects the realistic behavior of disease spread within a population.

View Article and Find Full Text PDF

E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).

View Article and Find Full Text PDF

ALCAM is an entry factor for severe community acquired Pneumonia-associated Human adenovirus species B.

Nat Commun

December 2024

Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.

Human adenovirus (HAdV) is a widely spread respiratory pathogen that can cause infections in multiple tissues and organs. Previous studies have established an association between HAdV species B (HAdV-B) infection and severe community-acquired pneumonia (SCAP). However, the connection between SCAP-associated HAdV-B infection and host factor expression profile in patients has not been systematically investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!