Structure and optical properties of twist-bend nematic liquid crystals doped with chiral dopants.

Phys Rev E

Chemical Physics Interdisciplinary Program, Department of Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA.

Published: July 2022

Twist-bend nematic liquid crystals (N_{TB} LCs), although consisting of achiral molecules, possess a spontaneous conic helix. They have been intensively studied and utilized in many applications in recent years. Herein we add chiral molecules to N_{TB} LCs and study their effects on the structure of the conic helix. We observe that the system is in the regular chiral nematic phase at high temperature and is still in the twist-bend nematic phase at low temperature. The addition of the chiral molecules does not induce a twist of the conic helical axis. The main effect of the chiral molecules is increasing the cone angle of the conic helix. We show that the structural chirality parameters in the chiral nematic phase and the twist-bend chiral nematic phase can be calculated from the same intrinsic chirality parameter, which only depends on the molecular structure and concentrations of the chiral molecule. We also observe a pretransitional phenomenon that the helical pitch of the chiral nematic phase increases dramatically when temperature is decreased toward the chiral nematic to twist-bend nematic phase transition temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.014704DOI Listing

Publication Analysis

Top Keywords

nematic phase
24
chiral nematic
20
twist-bend nematic
16
conic helix
12
chiral molecules
12
chiral
10
nematic
9
nematic liquid
8
liquid crystals
8
n_{tb} lcs
8

Similar Publications

Entropy-driven assembly of nematic liquid-crystal phases of cellulose nanocrystals (SCNCs) in aqueous suspensions results in the emergence of a cholesteric liquid crystalline phase (N* phase). We report that a solvated, non-adsorbing, highly branched natural polysaccharide, Gum Arabic (GA), strongly affects the assembly of the SCNCs and modifies the phase diagram: GA leads to significant crowding of the SCNC rods and induces a new liquid-liquid phase transition, where SCNC-rich and GA-rich droplets coexist. The solvated GA does not induce coagulation or gelation of the suspended SCNCs (at low concentrations of 1-3 wt% of GA).

View Article and Find Full Text PDF

The two-dimensional electron gas (2DEG) is a fundamental model, which is drawing increasing interest because of recent advances in experimental and theoretical studies of 2D materials. Current understanding of the ground state of the 2DEG relies on quantum Monte Carlo calculations, based on variational comparisons of different Ansätze for different phases. We use a single variational ansatz, a general backflow-type wave function using a message-passing neural quantum state architecture, for a unified description across the entire density range.

View Article and Find Full Text PDF

Nematic versus Kekulé Phases in Twisted Bilayer Graphene under Hydrostatic Pressure.

Phys Rev Lett

December 2024

Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain.

We address the precise determination of the phase diagram of magic angle twisted bilayer graphene under hydrostatic pressure within a self-consistent Hartree-Fock method in real space, including all the remote bands of the system. We further present a novel algorithm that maps the full real-space density matrix to a 4×4 density matrix based on a SU(4) symmetry of sublattice and valley degrees of freedom. We find a quantum critical point between a nematic and a Kekulé phase, and show also that our microscopic approach displays a strong particle-hole asymmetry in the weak coupling regime.

View Article and Find Full Text PDF

This study explores the influence of charge distribution and molecular shape on the stability of ferroelectric nematic liquid crystalline phases through atomistic simulations of DIO molecules. We demonstrate the role of dipole-dipole interactions and molecular shape in achieving polar ordering by simulating charged and chargeless topologies, and analysing positional and orientational pair-distribution functions. The charged DIO molecules exhibit head-to-tail and side-by-side parallel alignments conducive to long-range polar order, whereas the chargeless molecules show no polar ordering.

View Article and Find Full Text PDF

Ferroelectric nematic (N) liquid crystals combine liquid-like fluidity and orientational order of conventional nematics with macroscopic electric polarization comparable in magnitude to solid-state ferroelectric materials. Here, we present a systematic study of twenty-seven homologous materials with various fluorination patterns, giving new insight into the molecular origins of spontaneous polar ordering in fluid ferroelectric nematics. Beyond our initial expectations, we find the highest stability of the N phase to be in materials with specific fluorination patterns rather than the maximal fluorination, which might be expected based on simple models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!