The vacuum breakdown by 10-PW-class lasers is studied in the optimal configuration of laser beams in the form of an m-dipole wave, which maximizes the magnetic field. Using 3D PIC simulations we calculated the threshold of vacuum breakdown, which is about 10 PW. We examined in detail the dynamics of particles and identified particle trajectories which contribute the most to vacuum breakdown in such highly inhomogeneous fields. We analyzed the dynamics of the electron-positron plasma distribution on the avalanche stage. It is shown that the forming plasma structures represent concentric toroidal layers and the interplay between particle ensembles from different spatial regions favors vacuum breakdown. Based on the angular distribution of charged particles and gamma photons a way to experimentally identify the process of vacuum breakdown is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.106.015201 | DOI Listing |
BMJ Glob Health
January 2025
Women's and Children's Health, University of Liverpool, Liverpool, UK.
Background: Despite strong evidence-based strategies for prevention and management, global efforts to reduce deaths from postpartum haemorrhage (PPH) have failed, and it remains the leading cause of maternal mortality. We conducted a detailed review of all maternal deaths from 33 facilities in Malawi to identify health system weaknesses leading to deaths from PPH.
Methods: Data were collected regarding every maternal death occurring across all district and central hospitals in Malawi.
Int J Pharm
December 2024
Center for Science of Imperatriz, Federal University of Maranhão - UFMA, 65900-410, Imperatriz, MA, Brazil. Electronic address:
This study reports the synthesis and the experimental-theoretical characterization of a new coamorphous system consisting of ethionamide (ETH) and mandelic acid (MND) as a coformer. The solid dispersion was synthesized using the slow solvent evaporation method in an ethanolic medium. The structural, vibrational, and thermal properties of the system were characterized.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea.
Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.
View Article and Find Full Text PDFMol Med
December 2024
Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China.
Background: Preeclampsia (PE) is a serious pregnancy complication associated with impaired trophoblast function. Integrin β3 (ITGB3) is a cell adhesion molecule that plays a role in cell movement. The objective of this study was to identify the biological function and expression level of ITGB3 in PE.
View Article and Find Full Text PDFFood Res Int
January 2025
Dpto. Tecnología de Alimentos, Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain. Electronic address:
The hydrolysis of legume proteins improves their nutritional and functional properties. Usually done by mixing flour with an enzyme solution, the process can be simplified using vacuum enzyme impregnation during soaking. This study used vacuum impregnation with papain or bromelain to obtain hydrolysed broad bean flours.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!