A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Morphological transformation from fibers to sheets in embiopteran silk. | LitMetric

Morphological transformation from fibers to sheets in embiopteran silk.

Phys Rev E

Center for Nanostructures, Santa Clara University, Santa Clara, California 95053, USA.

Published: July 2022

Embioptera (webspinners) are insects that construct domiciles using silk produced from their front feet. This silk is the finest known with measured single fiber diameters in the 30-140 nm range. In the wild, some webspinner silk on trees is observed to have a clothlike or shiny sheetlike appearance. Both forms of silk shield the occupants from rain water effectively: presumably valuable in tropical environments. In this article we elucidate the mechanism by which silk fibers are transformed into these structures through interaction with water. We quantify the evaporation rates of single water droplets which have been suspended on unmodified as-spun silk for two Trinidadian arboreal species: Antipaluria urichi (Clothodidae) and Pararhagadochir trinitatis (Scelembiidae). These rates are compared to those of droplets suspended on rose petals due to similar wetting properties (both hydrophobicity and pinning). We observe that on sufficiently thick silk, droplet evaporation rates decrease with time. This behavior is a result of a thin soluble film developing on the drop surface that later becomes a solid residual film. Experimentally verified theoretical models are invoked to support the results.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.014801DOI Listing

Publication Analysis

Top Keywords

silk
8
evaporation rates
8
droplets suspended
8
morphological transformation
4
transformation fibers
4
fibers sheets
4
sheets embiopteran
4
embiopteran silk
4
silk embioptera
4
embioptera webspinners
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!