AI Article Synopsis

  • A new model called the "random-walk shielding-potential viscosity model" (RWSP-VM) has been developed to calculate the viscosities of warm dense metals by incorporating random-walk ion statistics and the Debye shielding effect.
  • The model has been tested on various metals (Be, Al, Fe, U) and its results align well with viscosities obtained from molecular dynamics simulations, confirming its validity.
  • Comparisons with other viscosity models show that RWSP-VM provides consistent results, suggesting it is a versatile and efficient tool for studying metal viscosities in warm dense conditions with potential applications across multiple fields.

Article Abstract

We develop a model, called the "random-walk shielding-potential viscosity model" (RWSP-VM) that introduces the statistics of random-walk ions and the Debye shielding effect to describe the viscosities of warm dense metals. The viscosities of several metals with low to high atomic numbers (Be, Al, Fe, and U) are calculated using the analytical expression of RWSP-VM. Additionally, we simulate the viscosities of Fe and Be by employing the Langevin molecular dynamics (MD) and classical MD, while the MD data for Al and U are obtained from a previous work. The results of the RWSP-VM are in good agreement with the MD results, which validates the proposed model. Furthermore, we compare the RWSP-VM with the one-component plasma model and Yukawa viscosity model and show that the three models yield results in excellent agreement with each other in the regime where the RWSP-VM is applicable. These results indicate that the RWSP-VM is a universal, accurate, and highly efficient model for calculating the viscosity of metals in the warm dense state. The code of the proposed RWSP-VM is provided, and it is envisaged that it will have broad application prospects in numerous fields.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.014142DOI Listing

Publication Analysis

Top Keywords

warm dense
12
shielding-potential viscosity
8
viscosity model
8
dense metals
8
rwsp-vm
7
model
6
random-walk shielding-potential
4
viscosity
4
model warm
4
metals
4

Similar Publications

The properties of the hydrogen fluid at high pressures are still of interest to the scientific community. The experimentally unreachable dynamical properties could provide new insights into this field. In 2020 [Cheng et al.

View Article and Find Full Text PDF

Mixed Resolution-of-the-Identity Compressed Exchange for Hybrid Mixed Deterministic-Stochastic Density Functional Theory from Low to Extreme Temperatures.

J Chem Theory Comput

January 2025

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

Exact exchange contributions included in density functional theory calculations have rendered excellent electronic structure results on both cold and extremely hot matter. In this work, we develop a mixed deterministic-stochastic resolution-of-the-identity compressed exchange (mRICE) method for efficient calculation of exact and hybrid electron exchange, suitable for applications alongside mixed stochastic-deterministic density functional theory. mRICE offers accurate calculations of the electronic structure at a largely reduced computation time compared to other compression algorithms, such as Lin's adaptive compressed exchange, for the warm dense matter.

View Article and Find Full Text PDF

We present two methods for computing the dynamic structure factor for warm dense hydrogen without invoking either the Born-Oppenheimer approximation or the Chihara decomposition, by employing a wave-packet description that resolves the electron dynamics during ion evolution. First, a semiclassical method is discussed, which is corrected based on known quantum constraints, and second, a direct computation of the density response function within the molecular dynamics. The wave-packet models are compared to PIMC and DFT-MD for the static and low-frequency behavior.

View Article and Find Full Text PDF
Article Synopsis
  • The obligate intracellular parasite replicates within a compartment called the parasitophorous vacuole (PV) and utilizes a protein ingestion pathway to take in nutrients from the host cell's cytosol, initiated by the protein GRA14.
  • A genome-wide CRISPR screen revealed that mutants lacking components of this ingestion pathway (GRA14, CPL, or CRT) are forced to rely more on alternative metabolic pathways to survive, such as pyrimidine and fatty acid biosynthesis.
  • Analysis showed that these ingestion-deficient mutants had lower levels of key nutrients and growth defects when amino acids were scarce, indicating that the ingestion pathway plays a crucial role in nutrient acquisition during resource-limited conditions.
View Article and Find Full Text PDF

A pulsed power facility has been designed for studying the warm dense matter regime. It is based on the pulsed Joule heating technique, originally proposed by Korobenko and Rakhel [Int. J.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!