Identifying embryos with a high potential for implementation remains a challenge in fertilization (IVF) cycles. Despite progress in IVF treatment, only a minority of generated embryos has the ability to implant. Another drawback of this practice is the high frequency of multiple pregnancies. This problem leads to economic and health problems. Therefore, the transfer of a single embryo with high implantation potential is the ideal strategy. Morphometric evaluation of two-pronucleus zygote images is a helpful technique when aiming to transfer a single embryo with a high implantation potential. In this study, an automated zygote morphometric evaluation algorithm, called the zygote morphology evaluation (ZME) algorithm, was created to analyze the zygote and provide morphological measurements. The first and most crucial step of the ZME algorithm is the noise reduction step, which was first applied to zygote images. After that, the proposed algorithm detects different parts of the zygote that are indicators of embryo viability and normality, that is the oolemma, perivitelline space, zona pellucida, and nucleolar precursor bodies (NPBs). In addition, a novel dataset was prepared for this task. This dataset consisted of 703 human zygote images, and called the human zygote morphometric evaluation dataset (HZME-DS). Our experimental results in the HZME-DS showed that the ZME algorithm was able to achieve 79.58% average accuracy in identifying the oolemma region, 79.40% average accuracy in determining the perivitelline space, and 79.72% accuracy in identifying the zona pellucida. To calculate the accuracy of identifying NPBs, the proposed algorithm uses Recall and Precision measures, and their harmonic average (F1 measure) reached values of 81.14% and 79.53%, respectively. These encouraging results for our proposed method, which is an automatic and very fast method, showed that the ZME algorithm could help embryologists to evaluate the best zygotes in real time and the best embryos subsequently.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0967199422000326 | DOI Listing |
Heliyon
January 2025
Haramaya University, School of Animal and Range Sciences, P. O. Box 138, Dire Dawa, Ethiopia.
The aim of the study was to determine the relationship between slaughter weight (SW) with body components and liner body measurements and investigate the coefficient of correlation between slaughter weight with body component and liner body measurements to select the best regression equation. Data on liner body measurements (height at wither and at hips, heart girth, body length, height and width of hump, height at fall and hind legs, body sheath height, height at hooks, barrel circumference, width of face, length of face and tail circumference) and slaughter weight of body components (Hot Carcass Weight (HCW), Empty Body Weight (ESW), Internal Offal (IO) and External Offal (EO)) were collected from 62 Hararghe cattle at Haramaya University abattoir. ESW was calculated as SW with less gut contents.
View Article and Find Full Text PDFAnn Thorac Surg Short Rep
September 2024
Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.
Background: Understanding the development of central venous catheter-related thrombus (CVCRT) is vital for the prevention of adverse events caused by thrombi after cardiac surgery in children. However, the risks associated with CVCRT remain controversial. This study analyzed the risk factors of CVCRT based on a detailed evaluation of its morphometric features and severity.
View Article and Find Full Text PDFNeurosci Lett
January 2025
Max Super Speciality Hospital, Saket, New Delhi, India. Electronic address:
Background: Clinical brain MRI scans, including contrast-enhanced (CE-MR) images, represent an underutilized resource for neuroscience research due to technical heterogeneity.
Purpose: To evaluate the reliability of morphometric measurements from CE-MR scans compared to non-contrast MR (NC-MR) scans in normal individuals.
Methods: T1-weighted CE-MR and NC-MR scans from 59 normal participants (aged 21-73 years) were compared using CAT12 and SynthSeg + segmentation tools.
Alzheimers Dement
December 2024
Amsterdam UMC, Amsterdam, Netherlands
Background: Different patterns of atrophy exist in the dementia stage of AD. However, little is known about the heterogeneity of atrophy patterns and the mechanisms that drive subsequent propagation of the disease in the preclinical stages.
Method: From the AMYPAD‐PNHS cohort, we included a total of 1323 non‐demented individuals, including 1094 amyloid‐negative, and 229 amyloid‐positive participants (Table 1).
Alzheimers Dement
December 2024
Frontotemporal Disorders Unit and Massachusetts Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
Background: APOE‐ɛ4 is a major risk factor for Alzheimer’s disease (AD); its effects have been examined in late‐onset AD (LOAD) but less so in early‐onset AD (EOAD). In LOAD, APOE genotype has strong effects on episodic memory and medial temporal lobe (MTL) atrophy (Wolk & Dickerson, 2010). However, EOAD often presents with more cognitive impairments in executive function, language, and visuospatial abilities than memory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!