HMGB1 in the mPFC governs comorbid anxiety in neuropathic pain.

J Headache Pain

Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.

Published: August 2022

AI Article Synopsis

  • The study explores the connection between neuroinflammation and mood disorders related to neuropathic pain, focusing on the role of the proinflammatory cytokine HMGB1 in the medial prefrontal cortex (mPFC).
  • Mice were used to model neuropathic pain and assess anxiety-like behaviors, showing that increased HMGB1 levels in the mPFC correlated with onset of anxiety symptoms earlier in neuropathic pain induced by one method compared to another.
  • Targeting HMGB1 with monoclonal antibodies reduced anxiety without affecting pain perception, suggesting a potential therapeutic approach for managing mood disorders linked to neuropathic pain.

Article Abstract

Background: Whether neuroinflammation causes comorbid mood disorders in neuropathic pain remains elusive. Here we investigated the role of high mobility group box 1 protein (HMGB1), a proinflammatory cytokine, in the medial prefrontal cortex (mPFC) in anxiety comorbidity of neuropathic pain.

Methods: Neuropathic pain was induced by partial transection of the infraorbital nerve (p-IONX) or partial sciatic nerve ligation (PSL) in mice and evaluated by measuring nociceptive thresholds to mechanical and heat stimulation. Anxiety-like behaviors were assessed by elevated plus maze, light dark box and open field tests. Aversive or anti-aversive effect was detected by conditioned place preference test. Neuronal activity was evaluated by single-unit and patch clamp recordings. The contribution of mPFC pyramidal neurons to anxiety was further examined by selectively inhibiting them by optogenetics. HMGB1 expression was measured by immunohistochemistry and western blotting. Antagonism of HMGB1 was achieved by injecting anti-HMGB1 monoclonal antibody (mAb) intracerebrally or intraperitoneally.

Results: Anxiety-like behaviors were presented earlier after p-IONX than after PSL. HMGB1 expression was upregulated in the mPFC temporally in parallel to anxiety onset, rather than in other regions associated with anxiety. The upregulation of HMGB1 expression and its translocation from the nucleus to cytoplasm in the mPFC occurred predominantly in neurons and were accompanied with activation of microglia and astrocytes. Infusion of anti-HMGB1 mAb into the mPFC during the early and late phases after either p-IONX or PSL alleviated anxiety-like behaviors and aversion without changing pain sensitization, while local infusion of exogenous ds-HMGB1, the proinflammatory form of HMGB1, into the mPFC induced anxiety and aversion but not pain sensitization in naïve mice. In addition to reversing established pain sensitization and anxiety simultaneously, intraperitoneal injection of anti-HMGB1 mAb reduced HMGB1 upregulation and suppressed the hyperexcitability of layer 2/3 pyramidal neurons in the mPFC after p-IONX. Moreover, optogenetic inhibition of mPFC pyramidal neurons alleviated anxiety in p-IONX mice.

Conclusion: These results demonstrate that HMGB1 in the mPFC drives and maintains anxiety comorbidity in neuropathic pain by increasing the excitability of layer 2/3 pyramidal neurons, and justify antagonism of HMGB1, e.g., neutralization by mAb, as a promising therapeutic strategy for neuropathic pain with anxiety comorbidity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382735PMC
http://dx.doi.org/10.1186/s10194-022-01475-zDOI Listing

Publication Analysis

Top Keywords

neuropathic pain
20
pyramidal neurons
16
hmgb1 mpfc
12
anxiety comorbidity
12
anxiety-like behaviors
12
hmgb1 expression
12
pain sensitization
12
hmgb1
10
anxiety
10
mpfc
9

Similar Publications

Introduction: Pain is one of the most frequently reported symptoms in hemodialyzed (HD) patients, with prevalence rates between 33% and 82%. Risk factors for chronic pain in HD patients are older age, long-lasting dialysis history, several concomitant diseases, malnutrition, and others. However, chronic pain assessment in HD patients is rarely performed by specialists in pain medicine, with relevant consequences in terms of diagnostic and treatment accuracy.

View Article and Find Full Text PDF

Temporal Dynamics of Affective Scene Processing in the Healthy Adult Human Brain.

Neurosci Biobehav Rev

January 2025

Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany. Electronic address:

Understanding how the brain distinguishes emotional from neutral scenes is crucial for advancing brain-computer interfaces, enabling real-time emotion detection for faster, more effective responses, and improving treatments for emotional disorders like depression and anxiety. However, inconsistent research findings have arisen from differences in study settings, such as variations in the time windows, brain regions, and emotion categories examined across studies. This review sought to compile the existing literature on the timing at which the adult brain differentiates basic affective from neutral scenes in less than one second, as previous studies have consistently shown that the brain can begin recognizing emotions within just a few milliseconds.

View Article and Find Full Text PDF

Sleep deprivation affects pain sensitivity by increasing oxidative stress and apoptosis in the medial prefrontal cortex of rats via the HDAC2-NRF2 pathway.

Biomed J

January 2025

Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China. Electronic address:

Sleep is crucial for sustaining normal physiological functions, and sleep deprivation has been associated with increased pain sensitivity. The histone deacetylases (HDACs) are known to significantly regulate in regulating neuropathic pain, but their involvement in nociceptive hypersensitivity during sleep deprivation is still not fully understood. Utilizing a modified multi-platform water environment technique to establish a sleep deprivation model.

View Article and Find Full Text PDF

Background: Chronic postoperative pain is the most common postoperative complication that impairs quality of life. Postoperative pain gradually develops into neuropathic pain. Multimodal analgesia targets multiple points in the pain pathway and influences the mechanisms of pain chronification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!