Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Arid and semiarid environments are characterized by low water availability (e.g., in soil and atmosphere), high air temperature, and irregularity in the spatio-temporal distribution of rainfall. In addition to the economic and environmental consequences, drought also causes physiological damage to crops and compromises their survival in ecosystems. The removal of vegetation is responsible for altering the energy exchange of heat and water in natural ecosystems and agricultural areas. The fluxes of CO are also changed, and environments with characteristics of sinks, which can be sources of CO after anthropic disturbances. These changes can be measured through methods such as sap flow, eddy covariance, remote sensing, and energy balance. Despite the relevance of each method mentioned above, there are limitations in their applications that must be respected. Thus, this review aims to quantify the processes and changes of energy fluxes, CO, and their interactions with the surfaces of terrestrial ecosystems in dry environments. Studies report that the use of methods that integrate data from climate monitoring towers and remote sensing products helps to improve the accuracy of the determination of energy fluxes on a global scale, also helping to reduce the dissimilarity of results obtained individually. Through the collection of works in the literature, it is reported that several areas of the Brazilian Caatinga biome, which is a Seasonally Dry Tropical Forest have been suffering from changes in land use and land cover. Similar fluxes of sensible heat in areas with cacti and Caatinga can be observed in studies. On the other hand, one of the variables influenced mainly by air temperature is net radiation. In dry forest areas, woody species can store large amounts of carbon in their biomass above and belowground. The use of cacti can modify the local carbon budget when using tree crops together. Therefore, the study highlights the complexity and severity of land degradation and changes in CO, water, and energy fluxes in dry environments with areas of forest, grassland, and cacti. Vegetation energy balance is also a critical factor, as these simulations are helpful for use in forecasting weather or climate change. We also highlight the need for more studies that address environmental conservation techniques and cactus in the conservation of degraded areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-022-10339-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!