The addition of FAIMS increases targeted proteomics sensitivity from FFPE tumor biopsies.

Sci Rep

Translational Medicine, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.

Published: August 2022

Mass spectrometry-based targeted proteomics allows objective protein quantitation of clinical biomarkers from a single section of formalin-fixed, paraffin-embedded (FFPE) tumor tissue biopsies. We combined high-field asymmetric waveform ion mobility spectrometry (FAIMS) and parallel reaction monitoring (PRM) to increase assay sensitivity. The modular nature of the FAIMS source allowed direct comparison of the performance of FAIMS-PRM to PRM. Limits of quantitation were determined by spiking synthetic peptides into a human spleen matrix. In addition, 20 clinical samples were analyzed using FAIMS-PRM and the quantitation of HER2 was compared with that obtained with the Ventana immunohistochemistry assay. FAIMS-PRM improved the overall signal-to-noise ratio over that from PRM and increased assay sensitivity in FFPE tissue analysis for four (HER2, EGFR, cMET, and KRAS) of five proteins of clinical interest. FAIMS-PRM enabled sensitive quantitation of basal HER2 expression in breast cancer samples classified as HER2 negative by immunohistochemistry. Furthermore, we determined the degree of FAIMS-dependent background reduction and showed that this correlated with an improved lower limit of quantitation with FAIMS. FAIMS-PRM is anticipated to benefit clinical trials in which multiple biomarker questions must be addressed and the availability of tumor biopsy samples is limited.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381555PMC
http://dx.doi.org/10.1038/s41598-022-16358-1DOI Listing

Publication Analysis

Top Keywords

targeted proteomics
8
sensitivity ffpe
8
ffpe tumor
8
assay sensitivity
8
quantitation
5
faims-prm
5
addition faims
4
faims increases
4
increases targeted
4
proteomics sensitivity
4

Similar Publications

Background: Chronic lymphocytic leukemia (CLL) is a common hematologic malignancy. Although previous research has explored associations between plasma proteins and CLL, the causal relationships remain unclear. This study used Mendelian randomization (MR) to investigate the causal relationship between 7156 plasma proteins and CLL risk.

View Article and Find Full Text PDF

Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Shenzhen Bay Laboratory, Shenzhen, Guandong, China.

Background: The classic mode of STING activation is through binding the cyclic dinucleotide 2'3'-cyclic GMP-AMP (cGAMP), produced by the DNA sensor cyclic GMP-AMP synthase (cGAS), which is important for the innate immune response to microbial infection and autoimmune disease. Modes of STING activation that are independent of cGAS are much less well understood. We wanted to explore the interactome of STING on the organelles during its trafficking route and to understand the regulatory network of STING signaling.

View Article and Find Full Text PDF

Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Physiopathology in Aging Laboratory (LIM-22), University of São Paulo Medical School, São Paulo, São Paulo, Brazil.

Background: Excessive daytime sleepiness is a common and early symptom of Alzheimer's disease (AD). The subcortical wake-promoting neurons in the lateral hypothalamic area, tuberomammillary nucleus (TMN), and locus coeruleus synchronize to maintain wakefulness/arousal. Although significant neuronal decline occurs in wake-promoting regions, the TMN histaminergic neurons remain relatively more intact than orexinergic and nor-adrenergic neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!