Background: Neurogenesis is the ability to generate new neurons from resident stem/progenitor populations. Although often understood as a homeostatic process, several species of teleost fish, salamanders, and lacertid lizards are also capable of reactive neurogenesis, spontaneously replacing lost or damaged neurons. Here, we demonstrate that reactive neurogenesis also occurs in a distantly related lizard species, Eublepharis macularius, the leopard gecko.

Results: To initiate reactive neurogenesis, the antimetabolite 3-acetylpyridine (3-AP) was administered. Four days following 3-AP administration there is a surge in neuronal cell death within a region of the forebrain known as the medial cortex (homolog of the mammalian hippocampal formation). Neuronal cell death is accompanied by a shift in resident microglial morphology and an increase neural stem/progenitor cell proliferation. By 30 days following 3-AP administration, the medial cortex was entirely repopulated by NeuN+ neurons. At the same time, local microglia have reverted to a resting state and cell proliferation by neural stem/progenitors has returned to levels comparable with uninjured controls.

Conclusions: Together, these data provide compelling evidence of reactive neurogenesis in leopard geckos, and indicate that the ability of lizards to spontaneously replace lost or damaged forebrain neurons is more taxonomically widespread and evolutionarily conserved than previously considered.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.525DOI Listing

Publication Analysis

Top Keywords

reactive neurogenesis
16
eublepharis macularius
8
lost damaged
8
3-ap administration
8
neuronal cell
8
cell death
8
medial cortex
8
cell proliferation
8
neurogenesis
5
spontaneous neuronal
4

Similar Publications

Glucocorticoid-Dependent Retinal Degeneration and Vision Impairment in Mice Susceptible to Prenatal Stress-Induced Behavioral Abnormalities.

Cell Mol Neurobiol

December 2024

Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea.

Chronic exposure to prenatal stress can impair neurogenesis and lead to irreversible cognitive and neuropsychiatric abnormalities in offspring. The retina is part of the nervous system; however, the impacts of prenatal stress on retinal neurogenesis and visual function remain unclear. This study examined how elevated prenatal glucocorticoid levels differentially affect retinal development in the offspring of pregnant mice exposed to chronic unpredictable mild stress (CUMS).

View Article and Find Full Text PDF

Microenvironment-responsive injectable hydrogel for neuro-vascularized bone regeneration.

Mater Today Bio

December 2024

Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China.

Bone is a richly innervated and vascularized tissue, whereas nerve-vascular network reconstruction was often ignored in biomaterial design, resulting in delayed or incomplete bone healing. Inspired by the bone injury microenvironments, here we report a controllable drug delivery strategy using a pH and reactive oxygen species (ROS) dual-response injectable hydrogel. Based on the dynamic borate ester bond covalent crosslinking, nano-hydroxyapatite (HA) and curculigoside (CCG) are integrated into PVA/TSPBA (PT) to construct a responsive injectable hydrogel (PTHC), which scavenges excessive ROS from the injury microenvironment and responsively releases HA and CCG, providing favorable homeostasis and sustained release drug delivery system for bone repair.

View Article and Find Full Text PDF

Background: Reactive astrogliosis and microgliosis are coordinated responses to CNS insults and are pathological hallmarks of traumatic brain injury (TBI). In these conditions, persistent reactive gliosis can impede tissue repopulation and limit neurogenesis. Thus, modulating this phenomenon has been increasingly recognized as potential therapeutic approach.

View Article and Find Full Text PDF

The dentate gyrus of the hippocampus is a plastic structure that displays modifications at different levels in response to positive stimuli as well as to negative conditions such as brain damage. The latter involves global alterations, making understanding plastic responses triggered by local damage difficult. One key feature of the dentate gyrus is that it contains a well-defined neurogenic niche, the subgranular zone, and beyond neurogenesis, newly born granule cells may maintain a "young" phenotype throughout life, adding to the plastic nature of the structure.

View Article and Find Full Text PDF

Promoting wound nerve regeneration and synchronously initiating angiogenesis are critical factors in the healing process of diabetic wounds. However, existing research on diabetic wounds mainly focuses on angiogenesis, bacterial infection and reactive oxygen species, often failing to coordinate neurogenesis and angiogenesis. To coordinate the symbiosis of nerves and blood vessels in the diabetic wounds, we successfully designed a multifunctional chitosan (CS)-based sponges by regulating the structure of CS specifically for diabetic wound healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!