Introduction: Placental extravillous trophoblasts play a crucial role in the establishment of a healthy pregnancy. Reactive oxygen species (ROS) may contribute to their differentiation and function as mediators in signaling processes or might cause oxidative stress resulting in trophoblast dysfunction. The krüppel-like transcription factor 6 (KLF6) regulates many genes involved in essential cell processes where ROS are also involved. However, whether KLF6 regulates ROS levels has not been previously investigated.
Materials And Methods: KLF6 was silenced by siRNAs in HTR8-SV/neo cells, an extravillous trophoblast model. Total and mitochondrial ROS levels, as well as mitochondrial membrane potential and apoptosis were analyzed by flow cytometry. The expression of genes and proteins of interest were analyzed by qRT-PCR and Western blot, respectively. Cell response to oxidative stress, proliferation, viability, morphology, and migration were evaluated.
Results: KLF6 downregulation led to an increase in ROS and NOX4 mRNA levels, accompanied by reduced cell proliferation and increased p21 protein expression. Catalase activity, 2-Cys peroxiredoxin protein levels, Nrf2 cytoplasmic localization and hemoxygenase 1 expression, as well as mitochondrial membrane potential and cell apoptosis were not altered suggesting that ROS increase is not associated with cellular damage. Instead, KLF6 silencing induced cytoskeleton modifications and increased cell migration in a ROS-dependent manner.
Discussion: Present data reveal a novel role of KLF6 on ROS balance and signaling demonstrating that KLF6 downregulation induces an increase in ROS levels that contribute to extravillous trophoblast cell migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.placenta.2022.08.002 | DOI Listing |
Am J Reprod Immunol
January 2025
Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
Preeclampsia is one of the most severe obstetric complications, yet its pathogenesis remains unclear. Decidual natural killer (dNK) cells, the most abundant immune cells at the maternal-fetal interface, are closely associated with preeclampsia due to abnormalities in their quantity, phenotype, and function. This review summarizes the molecular mechanisms by which dNK cells regulate extravillous trophoblast (EVT) invasion, promote uterine spiral artery remodeling, and maintain immune tolerance.
View Article and Find Full Text PDFPlacenta
December 2024
Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel. Electronic address:
Introduction: Single-cell RNA-seq (scRNA-seq) revolutionized our understanding of tissue complexity in health and disease and revealed massive transcriptional dysregulation across placental cell classes in early-onset, but not late-onset preeclampsia (PE). However, the multinucleated syncytium is largely inaccessible to cell dissociation. Nuclei isolation and single-nuclei RNA-seq may be preferable in the placenta; not least considering compatibility with long-term tissue storage.
View Article and Find Full Text PDFStem Cell Rev Rep
December 2024
The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia.
Leucine-rich repeat-containing G protein-coupled receptors 5/4 (LGR5/LGR4) are critical stem cell markers in epithelial tissues including intestine. They agonise wingless-related integration site (WNT) signalling. Until now, LGR5/LGR4 were uncharacterised in placenta, where analogous functions may exist.
View Article and Find Full Text PDFHum Reprod Update
December 2024
C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA.
Background: Successful implantation is a critical step for embryo survival. The major losses in natural and assisted human reproduction appeared to occur during the peri-implantation period. Because of ethical constraints, the fascinating maternal-fetal crosstalk during human implantation is difficult to study and thus, the possibility for clinical intervention is still limited.
View Article and Find Full Text PDFJCI Insight
December 2024
Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!