As a new type of energy harvesting technology, the triboelectric nanogenerator (TENG) can convert distributed energy into electrical energy. It is widely used in various fields such as wearable devices, biomedical devices, Internet of Things (IoT), natural environment, etc. However, there are still some issues that need to be solved for the commercial implementation of TENGs. This review focuses on four major kinds of applications for TENG as the platform of harvesting micro-nano energy: in vivo, in vitro, living environment and wild environment. The challenges and feasible techniques facing TENGs are summarized in three aspects, including low energy output, immature manufacturing technology and unreliable service life. We also review the recent progress in the strategies for improving the output performance and robustness of TENGs, including but not limited to material optimization, device engineering and power management. The aim is to establish a feasible framework of TENGs from laboratory to engineering application. Finally, the future trend of TENGs' application in distributed sensors and biomedical devices has prospected as a promising micro-nano energy for guiding the next innovation researches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2022.114595 | DOI Listing |
Small
January 2025
School of Energy Science and Engineering and Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China.
The application of micro-nano size photovoltaic waste silicon (wSi) as an anode material for lithium-ion battery holds significant practical potential; However, it faces a series of challenges related to the volume expansion of Si during cycling. In this study, a simple, efficient, and eco-friendly microwave method is proposed for the rapid preparation of graphene-coated silicon materials (wSi@rGO) in just a few seconds, in which graphene as the stable interface mitigates structural failure caused by significant volume expansion, enhances electron and ion conductivity, inhibits undesirable side reactions between silicon and electrolyte, and promotes the stability of solid electrolyte interface (SEI). Importantly, the instantaneous high temperature generated by microwaves facilitates the formation of interfacial SiC chemical bonds, which strengthen the interaction between Si and graphene, thereby reducing Si delamination.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Université de Lorraine, CNRS, Institut Jean Lamour, Nancy, 54000, France.
ℤ-classified higher-order topological insulators (HOTIs) with chiral-symmetric higher-order topological phases protected by multipole chiral numbers (MCNs) have attracted extensive interest recently. However, how to design artificial ℤ-classified HOTIs with multiple topological phases remains an unresolved issue. Here, multiorbital degrees of freedom are introduced to acoustic crystals and the various methods of topological phase transitions are achieved for the orbital ℤ-classified HOTIs.
View Article and Find Full Text PDFNano Lett
January 2025
National Laboratory of Solid States Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China.
While the highest-performing memristors currently available offer superior storage density and energy efficiency, their large-scale integration is hindered by the random distribution of filaments and nonuniform resistive switching in memory cells. Here, we demonstrate the self-organized synthesis of a type of two-dimensional protonic coordination polymers with high crystallinity and porosity. Hydrogen-bond networks containing proton carriers along its nanochannels enable uniform resistive switching down to the subnanoscale range.
View Article and Find Full Text PDFNat Mater
January 2025
School of Physics, Zhejiang University, Hangzhou, China.
In ordered magnets, the elementary excitations are spin waves (magnons), which obey Bose-Einstein statistics. Similarly to Cooper pairs in superconductors, magnons can be paired into bound states under attractive interactions. The Zeeman coupling to a magnetic field is able to tune the particle density through a quantum critical point, beyond which a 'hidden order' is predicted to exist.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:
Transition metal sulfides, despite their abundance of electrochemically active sites, often demonstrate inadequate rate performance and mechanical stability. The development of a multi-dimensional hierarchical architecture has proven to be an effective approach to address the limitations associated with sulfides. In the present study, MoNiCo-S nanorods featuring hierarchical micro-/nano-structures were successfully synthesized through a straightforward methodology that involved "in situ growth-etching-vulcanization".
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!