Renal cancer is the most lethal urological cancer and characterized by high metastasis rate at initial diagnosis and drug resistance to current chemotherapeutics. Betulinic acid is a pentacyclic triterpene with broad biological activity that occurs naturally in variety of plants. Even though the anti-cancer efficacy of betulinic acid have been reported by many studies, the information about the pathways and the molecules which are affected by betulinic acid in renal cancer are limited. Epithelial-mesenchymal transition (EMT) is considered as the initial step of metastasis and contributes to drug resistance of cancer cells. Depending on the role of EMT in cancer progression and drug resistance, targeting EMT may represent an effective strategy in this context. Therefore, we aimed to investigate the anti-metastatic effects of betulinic acid on renal cell carcinoma cells by evaluating two EMT markers, SNAIL-1, and SDC-2. Following the treatment of betulinic acid at determined doses by WST-1 cytotoxicity assay in our previous study, SDC-2 expression level was decreased in both cell lines. Additionally, in correlation with this result, we also found a reduction in SDC-2 and SNAIL-1 protein levels which are measured by ELISA. Furthermore, the migration and invasion capacities were suppressed by betulinic acid treatment in metastatic renal adenocarcinoma ACHN cells. Taken together, our findings indicate that betulinic acid may constitute a potential treatment approach for renal cancer with further investigations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12032-022-01775-z | DOI Listing |
Int J Nanomedicine
January 2025
Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People's Republic of China.
Betulinic acid (BA) is a natural compound obtained from plant extracts and is known for its diverse pharmacological effects, including anti-tumor, antibacterial, anti-inflammatory, antiviral, and anti-atherosclerotic properties. Its potential in anti-tumor therapy has garnered considerable attention, particularly for the treatment of breast, lung, and liver cancers. However, the clinical utility of BA is greatly hindered by its poor water solubility, low bioavailability, and off-target toxicity.
View Article and Find Full Text PDFBetulin is a bioactive compound found in large quantities in birch bark and has a triterpene pentacyclic structure. Through the oxidation of betulin, betulinic acid is obtained, which is found in large quantities in nature. Betulin and betulinic acid have multiple pharmacological properties such as antiviral, anti-inflammatory, and anticancer properties.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Taguig City, Philippines.
The Nipah virus (NiV), a highly pathogenic zoonotic virus of the family, poses significant threats with its alarming mortality rates and pandemic potential. Despite historical cases, effective therapeutics remain elusive, prompting urgent exploration of potential antivirals. In this study, a structure-based virtual screening approach was employed to evaluate 690 metabolites sourced from ten medicinal plants () for their antiviral activity against Nipah virus proteins.
View Article and Find Full Text PDFMedicine (Baltimore)
December 2024
School of Marxism, Shaanxi University of Chinese Medicine, Xi'an, China.
Mugua is a Chinese herbal medicine derived from the dried mature fruit of Chaenomeles speciosa (Sweet) Nakai. This study aimed to dissect the active ingredients and mechanism of Mugua. In the present study, the active components of Mugua were collected and screened through databases combined with UPLC-Q/TOF-MS based qualitative analysis and literature mining, and their potential disease targets were predicted.
View Article and Find Full Text PDFBioorg Chem
December 2024
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China. Electronic address:
The inhibition of HBV DNA and elimination of HBsAg has already been established as an indicator for HBV clinic cure, and a novel dual-targeting inhibitors of HBV polymerase/entry are designed and synthesized in this study. Pentacyclic triterpenes (PTs) scaffold of exhibiting a high affinity to NTCP, including glycyrrhitinic acid (GA), oleanolic acid (OA), ursolic acid (UA), and betulinic acid (BA) were linked neatly with the nucleoside drug zidovudine (AZT) through a molecular hybrid strategy to synthesize twenty of PTs-AZT conjugates for targeting HBV polymerase as well as sodium taurocholate cotransporting polypeptide (NTCP). The conjugates showed significant inhibitory effects on the secretion of HBsAg and HBeAg in HepG2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!