Ursolic acid (UA) exists in a variety of medicinal plants. UA exhibits antimicrobial activity against several microorganisms; however, little is known regarding the potential antifungal effect of UA on Cryptococcus neoformans (C. neoformans). The antifungal and antibiofilm activities of UA on C. neoformans H99 were evaluated in this study. Minimum inhibitory concentration (MIC) of UA against C. neoformans H99 was determined by microdilution technique, and its action mode was elucidated by clarifying the variations in cell membrane integrity, capsule, and melanin production. Moreover, the inhibition and dispersal effects of UA on biofilm formation and mature biofilms by C. neoformans H99 were evaluated using crystal violet (CV) assay, optical microscopy, field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that the MIC value of UA against C. neoformans H99 was 0.25 mg/mL. UA disrupted the cell membrane integrity, inhibited the capsule and melanin production of C. neoformans H99 in a concentration-dependent manner. Further, UA presented the inhibitory effect on biofilm formation and dispersed mature biofilms, as well as compromised the cell membrane integrity of C. neoformans H99 cells within biofilms. Together, these results indicate that UA might be a potential therapeutic option for the treatment of C. neoformans-related infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-022-02992-5 | DOI Listing |
Molecules
December 2024
Department of Chemistry and Biochemistry, Missouri State University, Springfield, MO 65897, USA.
Antimicrobial compounds play a critical role in combating microbial infections. However, the emergence of antibiotic and antifungal resistance and the scarcity of new antibiotic developments pose a significant threat and demand the discovery of new antimicrobials for both bacterial and fungal pathogens. Our previous work described the first generation () of organoantimony-based compounds that showed antimicrobial activity against several bacterial and fungal pathogens.
View Article and Find Full Text PDFCan J Microbiol
December 2024
Postgraduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul - Porto Alegre, RS 91501-970, Brazil.
Microorganisms
November 2024
Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University (UNESP), Sao Jose dos Campos, São Paulo 12245-000, Brazil.
Cryptococcal infection commonly begins as an opportunistic infection in humans, however, this can escalate to a systemic or life-threatening form in immunocompromised individuals. Here, we aim to identify novel antifungal molecules from plants resources. Sclareolide, a phytochemical classified as a sesquiterpene lactone, was assessed against H99.
View Article and Find Full Text PDFLasers Med Sci
October 2024
Graduation Program in Molecular Pathology, University of Brasilia, Brasilia, Brazil.
The research on actinobacteria isolated from traditional medicinal plants is limited. Here, four new Streptomyces isolates (Ha1, Pp1, UzK and UzM) were obtained from the rhizospheres of Helianthus annuus, Pongamia pinnata and Ziziphus mauritiana, frequently utilized in Indian traditional medicine. The Streptomyces isolates aqueous extracts were studied alone against the growth of the Cryptococcus neoformans H99 reference strain, the fluconazole-tolerant T1-5796 and 89-610 strains, three histone deacetylase (HDAC) genes mutant strains, C.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2024
Research Service, Lieutenant Colonel Charles S. Kettles VA Medical Center, Ann Arbor, MI, United States.
Trehalose-6-phosphate synthase (TPS1) was identified as a virulence factor for and a promising therapeutic target. This study reveals previously unknown roles of TPS1 in evasion of host defenses during pulmonary and disseminated phases of infection. In the pulmonary infection model, TPS1-deleted () are rapidly cleared by mouse lungs whereas TPS1-sufficent WT (H99) and revertant (:) strains expand in the lungs and disseminate, causing 100% mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!