Pyrido [1,2-] Pyrimidinone Mesoionic Compounds Containing Vanillin Moiety: Design, Synthesis, Antibacterial Activity, and Mechanism.

J Agric Food Chem

State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.

Published: August 2022

() is a plant pathogen responsible for rice bacterial blight disease that remains challenging for prevention and cure. To discover innovative and extremely potent antibacterial agents, vanillin moiety was introduced to develop a series of novel mesoionic derivatives. Compound demonstrated excellent in vitro antibacterial activity against , with a 50% effective concentration value (EC) of 27.5 μg/mL, which was superior to that of the positive control agent thiodiazole copper (97.1 μg/mL) and comparable to that of compound "" (17.4 μg/mL). The greenhouse pot experiment also revealed that compound had 38.5% curative and 36.8% protective efficacy against rice bacterial leaf blight in vivo at 100 μg/mL, which was higher than those of thiodiazole copper (31.2 and 32.6%, respectively) and compound "" (29.6 and 33.2%, respectively). Compound enhanced the activities of related defense enzymes, increased chlorophyll content, and promoted the resistance of rice to bacterial infection by modulating the photosynthetic pathway. This study provides a basis for the subsequent structural modification and mechanism research of mesoionic derivatives.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.2c01838DOI Listing

Publication Analysis

Top Keywords

rice bacterial
12
vanillin moiety
8
antibacterial activity
8
mesoionic derivatives
8
thiodiazole copper
8
compound
5
pyrido [12-]
4
[12-] pyrimidinone
4
pyrimidinone mesoionic
4
mesoionic compounds
4

Similar Publications

Design, Synthesis, and Antibacterial Activity of Novel Sulfone Derivatives Containing a 1,2,4-Triazolo[4,3-]Pyridine Moiety.

J Agric Food Chem

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.

To develop antibacterial agents with a novel mechanism of action, a series of sulfone compounds containing a 1,2,4-triazolo[4,3-]pyridine were designed and synthesized by progressive molecular structure optimization. The antibacterial activities of some derivatives against the four plant pathogens (), (), (), and () were evaluated. Among them, compound demonstrated significant antibacterial activities against , , and , with EC values of 1.

View Article and Find Full Text PDF

Non-adapted bacterial infection suppresses plant reproduction.

Sci Adv

January 2025

School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

Environmental stressors, including pathogens, substantially affect the growth of host plants. However, how non-adapted bacteria influence nonhost plants has not been reported. Here, we reveal that infection of flowers by pv.

View Article and Find Full Text PDF

Variations in the Bacterial, Fungal, and Protist Communities and Their Interactions Within Sediment Affected by the Benthic Organism, Snail .

Microorganisms

December 2024

Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.

In aquatic benthic environments, benthic organisms have been found to regulate important biogeochemical characteristics and perform key ecosystem functions. To further explore the ecological impact of the snail 's, presence on the benthic environment, we employed high-throughput sequencing technology to investigate its effects on the bacterial, fungal, and protist communities in sediment and their intrinsic interactions. Our findings revealed that 's presence significantly enhanced the diversity and evenness of the fungal community while simultaneously decreasing the diversity and richness of the protist community, and it also altered the composition and relative abundance of the dominant phyla across the bacterial, fungal, and protist communities.

View Article and Find Full Text PDF

Bacterial Diversity in the Different Ecological Niches Related to the Yonghwasil Pond (Republic of Korea).

Microorganisms

December 2024

Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 01797, Republic of Korea.

The bacteriome profile was studied in freshwater ecosystems within the Yonghwasil pond, situated at the National Institute of Ecology, Seocheon-gun, Chungcheongnam-do, central western Korea. Six samples from water, mud, and soil niches were assessed, specifically from lake water, bottom mud (sediment), and root-soil samples of Bulrush, wild rice, Reed, and Korean Willow. Notably, the phylum exhibited an upward trend moving from water to mud to soil samples, whereas showed a contrasting decrease.

View Article and Find Full Text PDF

Successful seed germination and plant seedling growth often require association with endophytic bacteria. Barnyard grass ( (L.) P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!