Transcranial Approach to Invasive Giant Pituitary Adenoma: 2-Dimensional Operative Video.

Oper Neurosurg (Hagerstown)

Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Published: September 2022

Download full-text PDF

Source
http://dx.doi.org/10.1227/ons.0000000000000318DOI Listing

Publication Analysis

Top Keywords

transcranial approach
4
approach invasive
4
invasive giant
4
giant pituitary
4
pituitary adenoma
4
adenoma 2-dimensional
4
2-dimensional operative
4
operative video
4
transcranial
1
invasive
1

Similar Publications

High definition transcranial direct current stimulation as an intervention for cognitive deficits in Alzheimer's dementia: A randomized controlled trial.

J Prev Alzheimers Dis

February 2025

Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.

Background: Recent disease-modifying treatments for Alzheimer's disease show promise to slow cognitive decline, but show no efficacy towards reducing symptoms already manifested.

Objectives: To investigate the efficacy of a novel noninvasive brain stimulation technique in modulating cognitive functioning in Alzheimer's dementia (AD).

Design: Pilot, randomized, double-blind, parallel, sham-controlled study SETTING: Clinical research site at UT Southwestern Medical Center PARTICIPANTS: Twenty-five participants with clinical diagnoses of AD were enrolled from cognition specialty clinics.

View Article and Find Full Text PDF

: Multiple sclerosis (MS) is the most prevalent incurable nontraumatic neurological disability in young individuals. It causes numerous symptoms, including tingling, fatigue, muscle spasms, cognitive deficits, and neuropsychiatric disorders. This disease significantly worsens quality of life (QoL), and this dimension of general functioning provides valuable information about the effectiveness of treatment and well-being.

View Article and Find Full Text PDF

Despite the massive efforts of modern medicine to stop the evolution of Alzheimer's disease (AD), it affects an increasing number of people, changing individual lives and imposing itself as a burden on families and the health systems. Considering that the vast majority of conventional drug therapies did not lead to the expected results, this review will discuss the newly developing therapies as an alternative in the effort to stop or slow AD. Focused Ultrasound (FUS) and its derived Transcranial Pulse Stimulation (TPS) are non-invasive therapeutic approaches.

View Article and Find Full Text PDF

Optimizing TMS dosimetry: evaluating the effective electric field as a novel metric.

Phys Med Biol

January 2025

Department of Information Engineering, Electronics and Telecommunications (DIET) , University of Rome La Sapienza, Via Eudossiana 18, Rome, 00184, ITALY.

Objective: This study introduces the effective electric field (Eeff) as a novel observable for transcranial magnetic stimulation (TMS) numerical dosimetry. Eeff represents the electric field component aligned with the local orientation of cortical and white matter neuronal elements. To assess the utility of Eeff as a predictive measure for TMS outcomes, we evaluated its correlation with TMS induced muscle responses and compared it against conventional observables, including the electric (E-)field magnitude, and its components normal and tangential to the cortical surface.

View Article and Find Full Text PDF

Neuromodulation stands as a cutting-edge approach in the fields of neuroscience and therapeutic intervention typically involving the regulation of neural activity through physical and chemical stimuli. The purpose of this review is to provide an overview and evaluation of different neuromodulation techniques, anticipating a clearer understanding of the future developmental trajectories and the challenges faced within the domain of neuromodulation that can be achieved. This review categorizes neuromodulation techniques into genetic neuromodulation methods (including optogenetics, chemogenetics, sonogenetics, and magnetogenetics) and non-genetic neuromodulation methods (including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, transcranial ultrasound stimulation, photobiomodulation therapy, infrared neuromodulation, electromagnetic stimulation, sensory stimulation therapy, and multi-physical-factor stimulation techniques).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!