Hypoxia inducible factor-1 signaling pathway in macrophage involved angiogenesis in materials-instructed osteo-induction.

J Mater Chem B

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.

Published: August 2022

Although osteo-inductive materials are regarded as promising candidates for critical-sized bone repair, their clinical application is limited by ambiguous mechanisms. The hypoxia-inducible factor (HIF)-1 signaling pathway, which responds to hypoxic conditions, is involved in both angiogenesis and osteogenesis. Strategies harnessing HIF-1 signaling to promote angiogenesis have been applied and have succeeded in repairing segmental bone defects. Meanwhile, macrophages have been shown to have important immunoregulatory effects on material-induced osteo-induction and correlate with HIF-1 activity. Thus, it is reasonable to assume that HIF-activated macrophages may also play important roles in the angiogenesis of material-induced osteo-induction. To verify this assumption, a classical type of osteo-inductive calcium phosphate (TCPs) was utilized. First, using RNA sequencing, we found that hypoxia activated the HIF signaling pathway in macrophages, which contributed to angiogenesis in TCPs. In addition, after treatment with a conditioned medium extracted from the co-culture system of macrophages and TCPs under hypoxic conditions, the migration and tube formation ability of human umbilical vein endothelial cells (HUVECs) significantly increased. , inhibition of HIF-1 or clearance of macrophages could result in impaired angiogenesis in TCPs. Finally, more blood vessels were formed in the TCPs group than in the control group. In conclusion, this study elucidated the vital role of the HIF signaling pathway in infiltrating macrophages during early vessel growth in material-induced osteo-induction. It is beneficial in advancing the exploration of the related mechanism and providing possible support for optimizing the applicability of osteo-inductive materials in bone repair.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2tb00811dDOI Listing

Publication Analysis

Top Keywords

signaling pathway
16
material-induced osteo-induction
12
involved angiogenesis
8
osteo-inductive materials
8
bone repair
8
hif-1 signaling
8
hypoxic conditions
8
hif signaling
8
angiogenesis tcps
8
angiogenesis
6

Similar Publications

Osteosarcoma (OS) is a commonly observed malignant tumor in orthopedics that has a very poor prognosis. The endosomal sorting complex required for transport (ESCRT) is important for the development and progression of cancer and may be a significant target for cancer therapy. First, we built a prognostic signature using 7 ESCRT-related genes (ERGs) to predict OS patient prognosis.

View Article and Find Full Text PDF

Background: Osteoporosis (OP) is a systemic disease characterized by low bone mass. New progress has been made in the study of OP, such as lipid peroxidation. However, the role of lipid peroxides in osteoclast differentiation is still unclear.

View Article and Find Full Text PDF

Background: Circular (circ)RNAs have emerged as crucial contributors to cancer progression. Nonetheless, the expression regulation, biological functions, and underlying mechanisms of circRNAs in mediating hepatocellular carcinoma (HCC) progression remain insufficiently elucidated.

Methods: We identified circUCK2(2,3) through circRNA sequencing, RT-PCR, and Sanger sequencing.

View Article and Find Full Text PDF

Myocardial fibrosis leads to cardiac dysfunction and arrhythmias in heart failure with preserved ejection fraction (HFpEF), but the underlying mechanisms remain poorly understood. Here, RNA sequencing identifies Forkhead Box1 (FoxO1) signaling as abnormal in male HFpEF hearts. Genetic suppression of FoxO1 alters the intercellular communication between cardiomyocytes and fibroblasts, alleviates abnormal diastolic relaxation, and reduces arrhythmias.

View Article and Find Full Text PDF

Role of autophagy in plant growth and adaptation to salt stress.

Planta

January 2025

Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

Under salt stress, autophagy regulates ionic balance, scavenges ROS, and supports nutrient remobilization, thereby alleviating osmotic and oxidative damage. Salt stress is a major environmental challenge that significantly impacts plant growth and agricultural productivity by disrupting nutrient balance, inducing osmotic stress, and causing the accumulation of toxic ions like Na. Autophagy, a key cellular degradation and recycling pathway, plays a critical role in enhancing plant salt tolerance by maintaining cellular homeostasis and mitigating stress-induced damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!