Extended linear detection range of a BiNaTiO thin film-based self-powered UV photodetector current and voltage dual indicators.

Nanoscale Horiz

CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.

Published: September 2022

Ferroelectric materials are widely recognized for their ability to generate photovoltaic voltages larger than their bandgap, making them ideal candidates for photodetector applications. Here, we report a self-powered UV photodetector based on a BiNaTiO (BNT) thin film prepared by the sol-gel method. Compared with conventional photodetectors based on a single detection indicator, the demonstrated photodetector realizes UV light intensity detection over a wide linear range using a current and voltage dual indicator detection method. When the UV light intensity is lower than 1.8 mW cm, the voltage can be used to detect the light signal. Conversely, the current can be utilized to detect the signal. This method not only broadens the linear detection range of UV light intensity, making it possible to detect weak UV light of 45.2 nW cm, but also allows the detector to maintain relatively high sensitivity within the detectable range. To investigate the distribution of spatial UV light intensity, a self-powered photodetector array system has been utilized to record the output voltage signals as a map.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nh00204cDOI Listing

Publication Analysis

Top Keywords

light intensity
16
self-powered photodetector
12
linear detection
8
detection range
8
current voltage
8
voltage dual
8
light
6
detection
5
photodetector
5
extended linear
4

Similar Publications

Enhancing astaxanthin production from Chromochloris zofingiensis via blue light and exogenous inducers in plate photobioreactors.

Bioresour Technol

January 2025

Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, PR China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China. Electronic address:

This study investigates the photoinduction techniques for the maximization of astaxanthin production in Chromochloris zofingiensis following heterotrophic growth. Leveraging blue light, this study enhanced carbon allocation by suppressing the tricarboxylic acid cycle and activating the methylerythritol phosphate and pentose phosphate pathways to facilitate astaxanthin accumulation. Under blue light, an astaxanthin content of 5.

View Article and Find Full Text PDF

Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.

View Article and Find Full Text PDF

A Spiropyran-Based Hydrogel Composite for Wearable Detectors to Monitor Visible Light Intensity to Prevent Myopia.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China.

A wearable detector to monitor visible light intensity is realized by the restrained photochromism of a hydrogel composite containing light-responsive spiropyran with hydroxyl groups (SPOH). When exposed to visible light, the SPOH experiences a ring-opening to a ring-closed transition accompanied by discoloration from red to yellow. Unlike in the solution, the photochromism/discoloration rate is strongly correlated to the cross-linking points.

View Article and Find Full Text PDF

Single-Cell Sequencing of Peripheral Blood Mononuclear Cells Reveals Immune Landscape of Monkeypox Patients with HIV.

Emerg Microbes Infect

January 2025

State Key Laboratory of Experimental Hematology, Department of Physiology and Pathophysiology, Tianjin Medical University, Heping, Tianjin, 300070 China.

The monkeypox (MPXV) outbreak in 2022 is more prevalent among individuals with human immunodeficiency virus (HIV). While it is plausible that HIV-induced immunosuppression could result in a more severe progression, the exact mechanisms remain undetermined. To better understand the immunopathology of MPXV in patients with and without HIV infection, we employed single-cell RNA sequencing (scRNA-seq) to analyze peripheral blood mononuclear cells (PBMCs) from 6 patients hospitalized for MPXV, 3 of whom had HIV infection (HIV antibody positive & HIV RNA level below the detection limit), and 3 patients only infected with MPXV (HIV-).

View Article and Find Full Text PDF

Significance: Laparoscopic surgery presents challenges in localizing oncological margins due to poor contrast between healthy and malignant tissues. Optical properties can uniquely identify various tissue types and disease states with high sensitivity and specificity, making it a promising tool for surgical guidance. Although spatial frequency domain imaging (SFDI) effectively measures quantitative optical properties, its deployment in laparoscopy is challenging due to the constrained imaging environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!