Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The behavior of coordination polymers (CPs) against external stimuli has witnessed remarkable attention, especially when the resulting CPs present reversible molecular arrays. Accordingly, CPs with these characteristics can lead to differences in their properties owing to these structural differences, being promising for their use as potential molecular switches with diverse applications. Herein, we have synthesized four Zn(II) CPs bearing α-acetamidocinnamic acid (HACA) and 4,4'-bipyridine (4,4'-bipy). The reaction between Zn(OAc)·2HO, HACA, and 4,4'-bipy yields {[Zn(ACA)(4,4'-bipy)]·EtOH} (), which was used for the formation of three CPs through dissolution-recrystallization structural transformations (DRSTs): {[Zn(ACA)(4,4'-bipy)]·2MeOH} (), {[Zn(μ-ACA)(ACA)(4,4'-bipy)]·2HO} (), and {[Zn(μ-ACA)(4,4'-bipy)]·0.75CHCl} (). The study of the four crystal structures revealed that their secondary building units (SBUs) comprise monomeric, dimeric, and trimeric arrangements linked by 4,4'-bipy ligands. The fundamental role of the utilized solvent and/or temperature, as well as their effect on the orientation of the amide moieties driving the formation of the different SBUs is discussed. Furthermore, the reversibility and interconversion between the four CPs have been assayed. Finally, their solid-state photoluminescence has evinced that the effect of the amide moieties not only predetermine a different SBU but also lead to a different emission in compared with -.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374304 | PMC |
http://dx.doi.org/10.1021/acs.cgd.2c00520 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!