Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine-induced myocarditis is a rare but well-documented complication in young males. The increased incidence of sudden death among athletes following vaccination has been reported and requires further investigation. Whether the risk of myocarditis, a known major cause of sudden death in young male athletes, also increases after coronavirus disease 2019 (COVID-19) infection is unknown. The severity and implications of these critical adverse effects require a thorough analysis to elucidate their key triggering mechanisms. The present review aimed to evaluate whether there is a justification to hypothesize that catecholamines in a "hypercatecholaminergic" state are the key trigger of SARS-CoV-2 mRNA vaccine-induced myocarditis and related outcomes and whether similar risks are also present following COVID-19 infection. A thorough, structured scoping review of the literature was performed to build the hypothesis through three pillars: detection of myocarditis risk, potential alterations and abnormalities identified after SARS-CoV-2 mRNA vaccination or COVID-19 infection and consequent events, and physiological characteristics of the most affected population. The following terms were searched in indexed and non-indexed peer review articles and recent preprints (<12 months): agent, "SARS-CoV-2" or "COVID-19"; event, "myocarditis" or "sudden death(s)" or "myocarditis+sudden death(s)" or "cardiac event(s)"; underlying cause, "mRNA" or "spike protein" or "infection" or "vaccine"; proposed trigger, "catecholamine(s)" or "adrenaline" or "epinephrine" or "noradrenaline" or "norepinephrine" or "testosterone"; and affected population, "young male(s)" or "athlete(s)." The rationale and data that supported the hypothesis were as follows: SARS-CoV-2 mRNA vaccine-induced myocarditis primarily affected young males, while the risk was not observed following COVID-19 infection; independent autopsies or biopsies of patients who presented post-SARS-CoV-2 mRNA vaccine myocarditis in different geographical regions enabled the conclusion that a primary hypercatecholaminergic state was the key trigger of these events; SARS-CoV-2 mRNA was densely present, and SARS-CoV-2 spike protein was progressively produced in adrenal medulla chromaffin cells, which are responsible for catecholamine production; the dihydroxyphenylalanine decarboxylase enzyme that converts dopamine into noradrenaline was overexpressed in the presence of SARS-CoV-2 mRNA, leading to enhanced noradrenaline activity; catecholamine responses were physiologically higher in young adults and males than in other populations; catecholamine responses and resting catecholamine production were higher in male athletes than in non-athletes; catecholamine responses to stress and its sensitivity were enhanced in the presence of androgens; and catecholamine expressions in young male athletes were already high at baseline, were higher following vaccination, and were higher than those in non-vaccinated athletes. The epidemiological, autopsy, molecular, and physiological findings unanimously and strongly suggest that a hypercatecholaminergic state is the critical trigger of the rare cases of myocarditis due to components from SARS-CoV-2, potentially increasing sudden deaths among elite male athletes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372380PMC
http://dx.doi.org/10.7759/cureus.27883DOI Listing

Publication Analysis

Top Keywords

mrna vaccine-induced
12
vaccine-induced myocarditis
12
sars-cov-2 mrna
12
covid-19 infection
12
key trigger
8
sudden death
8
myocarditis
5
catecholamines key
4
covid-19
4
trigger covid-19
4

Similar Publications

Background/objectives: New SARS-CoV-2 variants are continuously emerging, making it essential to assess the efficacy of vaccine-induced immune protection. Limited information is available regarding T cell responses to BA.2.

View Article and Find Full Text PDF

: The COVID-19 pandemic prompted unprecedented vaccine development efforts against SARS-CoV-2. India, which was one of the countries most impacted by COVID-19, developed its indigenous vaccine in addition to utilizing the ones developed by other countries. While antibody levels and neutralizing antibody titres are considered initial correlates of immune protection, long-term protection from the pathogen relies on memory B and T cells and their recall responses.

View Article and Find Full Text PDF

BNT162b2 mRNA vaccine elicits robust virus-specific antibodies but poor cross-protective CD8 memory T cell responses in adolescents with type 1 diabetes.

J Microbiol Immunol Infect

January 2025

Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. Electronic address:

Background: COVID-19 mRNA vaccines have demonstrated 95 % efficacy in the general population. However, their immunogenicity in adolescents with Type 1 Diabetes (T1D), who exhibit weaken immune responses, remains insufficiently explored.

Methods: Longitudinal analysis of innate immune responses following PRR-agonists and BNT162b2 vaccine stimulations, along with S-specific antibody responses, memory T cell recall responses, and RNA-sequencing were assessed in eight T1D adolescents and 16 healthy controls at six different timepoints.

View Article and Find Full Text PDF

An mRNA vaccine induces antimycobacterial immunity by activating DNA damage repair and autophagy.

Mol Ther Nucleic Acids

March 2025

Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China.

Article Synopsis
  • A new mRNA vaccine for tuberculosis (TB) shows strong effectiveness in a zebrafish model, offering both prevention and treatment benefits.
  • Zebrafish that received the mRNA vaccine lived longer after being exposed to TB and showed significantly reduced bacterial levels when treated after infection.
  • The vaccine not only activates important DNA repair systems for immune function but also promotes cell survival and bacterial killing without triggering harmful cell death responses.
View Article and Find Full Text PDF

Nonhuman primate antigenic cartography of SARS-CoV-2.

Cell Rep

January 2025

Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. Electronic address:

Virus neutralization profiles against primary infection sera and corresponding antigenic cartography are integral part of the COVID-19 and influenza vaccine strain selection processes. Human single variant exposure sera have previously defined the antigenic relationships among SARS-CoV-2 variants but are now largely unavailable due to widespread population immunity. Therefore, antigenic characterization of future SARS-CoV-2 variants will require an animal model, analogous to using ferrets for influenza virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!