Glioblastoma (GBM) is the most aggressive tumor of the central nervous system and remains universally lethal due to lack of effective treatment options and their inefficient delivery to the brain. Here the development of multifunctional polymeric nanoparticles (NPs) for effective treatment of GBM is reported. The NPs are synthesized using a novel glutathione (GSH)-reactive poly (2,2″-thiodiethylene 3,3″-dithiodipropionate) (PTD) polymer and engineered for brain penetration through neutrophil elastase-triggered shrinkability, iRGD-mediated targeted delivery, and lexiscan-induced autocatalysis. It is found that the resulting lexiscan-loaded, iRGD-conjugated, shrinkable PTD NPs, or LiPTD NPs, efficiently penetrate brain tumors with high specificity after intravenous administration. Furthermore, it is demonstrated that LiPTD NPs are capable of efficient encapsulation and delivery of chemotherapy doxorubicin and sonosensitizer chlorin e6 to achieve combined chemotherapy and sonodynamic therapy (SDT). It is demonstrated that the capability of GSH depletion of LiPTD NPs further augments the tumor cell killing effect triggered by SDT. As a result, treatment with LiPTD NPs effectively inhibits tumor growth and prolongs the survival of tumor-bearing mice. This study may suggest a potential new approach for effective GBM treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534955PMC
http://dx.doi.org/10.1002/advs.202203894DOI Listing

Publication Analysis

Top Keywords

liptd nps
16
targeted delivery
8
polymeric nanoparticles
8
effective treatment
8
nps
7
brain
5
treatment
5
delivery chemo-sonodynamic
4
chemo-sonodynamic therapy
4
therapy brain
4

Similar Publications

Glioblastoma (GBM) is the most aggressive tumor of the central nervous system and remains universally lethal due to lack of effective treatment options and their inefficient delivery to the brain. Here the development of multifunctional polymeric nanoparticles (NPs) for effective treatment of GBM is reported. The NPs are synthesized using a novel glutathione (GSH)-reactive poly (2,2″-thiodiethylene 3,3″-dithiodipropionate) (PTD) polymer and engineered for brain penetration through neutrophil elastase-triggered shrinkability, iRGD-mediated targeted delivery, and lexiscan-induced autocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!