Experiment and mechanism study on enrichment of heavy metals during MSW pyrolysis by modified kaolin.

Environ Sci Pollut Res Int

Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China.

Published: January 2023

Experiment and mechanism studies on the enrichment of Pb, Cd, Zn, As, and Cr by modified kaolin were investigated during MSW (municipal solid waste) pyrolysis at 450 ~ 650 °C. The results showed that γAlOK(micro- and nano-γAlO by hydrothermal method modified kaolin) was relatively selective for the solid phase enrichment of Cr and As, while CaHPK (CaHPO impregnated modified kaolinite) was more advantageous for the adsorption of Pb and Zn, which might be related to the thermal stability of γAlO and the thermal conversion of CaHPO. Compared with the original kaolin, the adsorption and retention capacity of γAlOK for As was improved by 20 ~ 30%. Moreover, the retention rate of modified kaolin for Cd decreased from 66.75 to 30.30% at 450 ~ 650 ℃, and the effect of temperature on the volatilization of Cd was always greater than the active components on the surface of modified kaolin. In the fluidized bed experiment, the physical mixing of different modified kaolin achieves complementary advantages on the retention capacity of heavy metals. In addition, the ∆E between CaPO and PbCl is smaller than that of γAlO at 500 ~ 650 °C, i.e., their electron transfer induction is stronger, and therefore more favorable for electron transfer and stable chemical bond formation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-22509-8DOI Listing

Publication Analysis

Top Keywords

modified kaolin
24
experiment mechanism
8
heavy metals
8
retention capacity
8
electron transfer
8
modified
7
kaolin
7
mechanism study
4
study enrichment
4
enrichment heavy
4

Similar Publications

Fabrication of composite ceramic polymeric membranes for agricultural wastewater treatment.

Sci Rep

January 2025

Chemical Engineering and Pilot Plant Department, Engineering & Renewable Energy Research Institute, National Research Centre (NRC), Giza, 12622, Egypt.

Humans have contaminated water supplies with harmful compounds, including different heavy metals. Heavy metals can interfere with human and animal vital organs and metabolic processes. They are also persistent and bioaccumulative.

View Article and Find Full Text PDF

Effect of Microsize and Nanosize TiO on Porous Mullite-Alumina Ceramic Prepared by Slip Casting.

Materials (Basel)

December 2024

Institute of Materials and Surface Engineering, Faculty of Natural Science and Technology, Riga Technical University, Paula Valdena st. 3/7, LV-1048 Riga, Latvia.

Sintered porous mullite-alumina ceramics are obtained from the concentrated suspension of powdered raw materials such as kaolin, gamma and alpha AlO, and amorphous SiO, mainly by a solid-state reaction with the presence of a liquid phase. The modification of mullite ceramic is achieved by the use of micro- and nanosize TiO powders. The phase compositions were measured using an X-ray powder diffraction (XRD) Rigaku Ultima+ (Tokyo, Japan) and microstructures of the sintered specimens were analysed using scanning electron microscopy (SEM) Hitachi TM3000-TableTop (Tokyo, Japan).

View Article and Find Full Text PDF

Latent fingerprints (LFPs) are invisible impressions that need to be developed before being used for criminal investigation; however, existing fingerprint visualization techniques face challenges, such as complex preparation and poor contrast. To advance practical fingerprint detection, green-emissive micron-sized curcumin/kaolin composites were synthesized a facile and cost-effective one-step physical cross-linking method, which exhibited unprecedented performance in developing diversified marks, including LFPs, knuckle prints, palm prints, and footprints, with clear three-level details on various substrates. Notably, the powders successfully developed LFPs that were aged for 30 days and even up to 100 days, meeting the stringent requirements for comprehensive forensic application.

View Article and Find Full Text PDF

The experiments presented here are based on the reconfiguration of an ancient medicine, Lemnian Earth (LE) (terra sigillata, stamped earth, sphragis), an acclaimed therapeutic clay with a 2500-year history of use. Based on our hypothesis that LE was not a natural material but an artificially modified one involving a clay-fungus interaction, we present results from experiments involving the co-culture of a common fungus, Penicillium purpurogenum (Pp), with two separate clay slurries, smectite and kaolin, which are the principal constituents of LE. Our results show: (a) the leachate of the Pp+smectite co-culture is antibacterial in vitro, inhibiting the growth of both Gram-positive and Gram-negative bacteria; (b) in vivo, supplementation of regular mouse diet with leachates of Pp+smectite increases intestinal microbial diversity; (c) Pp+kaolin does not produce similar results; (d) untargeted metabolomics and analysis of bacterial functional pathways indicates that the Pp+smectite-induced microbiome amplifies production of short-chain fatty acids (SCFAs) and amino acid biosynthesis, known to modulate intestinal and systemic inflammation.

View Article and Find Full Text PDF

Target-oriented element activation and functional group synthesis lead to high quality modified clay for Prorocentrum donghaiense control.

Harmful Algae

January 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China. Electronic address:

Single source with series modifications (SSSM) is a new method to modify clay surfaces by activating clay mineral resources for harmful algal blooms control. In this study, the optimal preparation conditions for this method were obtained using response surface methodology. Based on the material analysis, an important way to obtain modified clay (MC) with the excellent Prorocentrum donghaiense removal performance was explored and the optimum preparation conditions were as follows: calcination temperature 750 °C, alkali neutralization pH 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!