Microbial predators such as choanoflagellates are key players in ocean food webs. Choanoflagellates, which are the closest unicellular relatives of animals, consume bacteria and also exhibit marked biological transitions triggered by bacterial compounds, yet their native microbiomes remain uncharacterized. Here we report the discovery of a ubiquitous, uncultured bacterial lineage we name Candidatus Comchoanobacterales ord. nov., related to the human pathogen Coxiella and physically associated with the uncultured marine choanoflagellate Bicosta minor. We analyse complete 'Comchoano' genomes acquired after sorting single Bicosta cells, finding signatures of obligate host-dependence, including reduction of pathways encoding glycolysis, membrane components, amino acids and B-vitamins. Comchoano encode the necessary apparatus to import energy and other compounds from the host, proteins for host-cell associations and a type IV secretion system closest to Coxiella's that is expressed in Pacific Ocean metatranscriptomes. Interactions between choanoflagellates and their microbiota could reshape the direction of energy and resource flow attributed to microbial predators, adding complexity and nuance to marine food webs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418006 | PMC |
http://dx.doi.org/10.1038/s41564-022-01174-0 | DOI Listing |
Front Cell Dev Biol
November 2024
Whitney Laboratory for Marine Biosciences, University of Florida, Saint Augustine, FL, United States.
Exploring the evolutionary dynamics of lysozymes is critical for advancing our knowledge of adaptations in immune and digestive systems. Here, we characterize the distribution of a unique class of lysozymes known as g-type, which hydrolyze key components of bacterial cell walls. Notably, ctenophores, and choanoflagellates (the sister group of Metazoa), lack g-type lysozymes.
View Article and Find Full Text PDFbioRxiv
September 2024
Chan Zuckerberg Biohub & Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, CA 94143.
Marine microeukaryotes have evolved diverse cellular features that link their life histories to surrounding environments. How those dynamic life histories intersect with the ecological functions of microeukaryotes remains a frontier to understand their roles in essential biogeochemical cycles. Choanoflagellates, phagotrophs that cycle nutrients through filter feeding, provide models to explore this intersection, for many choanoflagellate species transition between life history stages by differentiating into distinct cell types.
View Article and Find Full Text PDFmBio
September 2024
Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
Unlabelled: As the closest living relatives of animals, choanoflagellates offer insights into the ancestry of animal cell physiology. Here, we report the isolation and characterization of a colonial choanoflagellate from Mono Lake, California. The choanoflagellate forms large spherical colonies that are an order of magnitude larger than those formed by the closely related choanoflagellate .
View Article and Find Full Text PDFJ Mol Evol
October 2023
Department of Biology, Faculty of Science, Shinshu University, Matsumoto, Japan.
Bilateria exhibit whole-body handedness in internal structure. This left-right polarity is evolutionarily conserved with virtually no reversed extant lineage, except in molluscan Gastropoda. Phylogenetically independent snail groups contain both clockwise-coiled (dextral) and counterclockwise-coiled (sinistral) taxa that are reversed from each other in bilateral handedness as well as in coiling direction.
View Article and Find Full Text PDFMicroorganisms
May 2023
Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071 Castelló, Spain.
Biodegradable polymers offer a potential solution to marine pollution caused by plastic waste. The marine biofilms that formed on the surfaces of poly(lactide acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were studied. Bioplastics were exposed for 6 months to marine conditions in the Mediterranean Sea, and the biofilms that formed on their surfaces were assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!