Generalisable 3D printing error detection and correction via multi-head neural networks.

Nat Commun

Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK.

Published: August 2022

Material extrusion is the most widespread additive manufacturing method but its application in end-use products is limited by vulnerability to errors. Humans can detect errors but cannot provide continuous monitoring or real-time correction. Existing automated approaches are not generalisable across different parts, materials, and printing systems. We train a multi-head neural network using images automatically labelled by deviation from optimal printing parameters. The automation of data acquisition and labelling allows the generation of a large and varied extrusion 3D printing dataset, containing 1.2 million images from 192 different parts labelled with printing parameters. The thus trained neural network, alongside a control loop, enables real-time detection and rapid correction of diverse errors that is effective across many different 2D and 3D geometries, materials, printers, toolpaths, and even extrusion methods. We additionally create visualisations of the network's predictions to shed light on how it makes decisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378646PMC
http://dx.doi.org/10.1038/s41467-022-31985-yDOI Listing

Publication Analysis

Top Keywords

multi-head neural
8
neural network
8
printing parameters
8
generalisable printing
4
printing error
4
error detection
4
detection correction
4
correction multi-head
4
neural networks
4
networks material
4

Similar Publications

Background: Food image recognition, a crucial step in computational gastronomy, has diverse applications across nutritional platforms. Convolutional neural networks (CNNs) are widely used for this task due to their ability to capture hierarchical features. However, they struggle with long-range dependencies and global feature extraction, which are vital in distinguishing visually similar foods or images where the context of the whole dish is crucial, thus necessitating transformer architecture.

View Article and Find Full Text PDF

Utilizing a Novel Convolutional Neural Network for Diagnosis and Lesion Delineation in Colorectal Cancer Screening.

J Imaging Inform Med

January 2025

School of Control Science and Engineering, Shandong University, Jinan, 250012, Shandong, China.

Early detection of colorectal cancer is vital for enhancing cure rates and alleviating treatment burdens. Nevertheless, the high demand for screenings coupled with a limited number of endoscopists underscores the necessity for advanced deep learning techniques to improve screening efficiency and accuracy. This study presents an innovative convolutional neural network (CNN) model, trained on 8260 images from screenings conducted at four medical institutions.

View Article and Find Full Text PDF

Facial expression recognition faces great challenges due to factors such as face similarity, image quality, and age variation. Although various existing end-to-end Convolutional Neural Network (CNN) architectures have achieved good classification results in facial expression recognition tasks, these network architectures share a common drawback that the convolutional kernel can only compute the correlation between elements of a localized region when extracting expression features from an image. This leads to difficulties for the network to explore the relationship between all the elements that make up a complete expression.

View Article and Find Full Text PDF

Cognitive Radio (CR) technology enables wireless devices to learn about their surrounding spectrum environment through sensing capabilities, thereby facilitating efficient spectrum utilization without interfering with the normal operation of licensed users. This study aims to enhance spectrum sensing in multi-user cooperative cognitive radio systems by leveraging a hybrid model that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. A novel multi-user cooperative spectrum sensing model is developed, utilizing CNN's local feature extraction capability and LSTM's advantage in handling sequential data to optimize sensing accuracy and efficiency.

View Article and Find Full Text PDF

In the intelligent harvesting of eggplant, the lack of in situ identification technology makes it challenging to determine the maturity of purple eggplant fruit. The length of the fruit-setting date can determine when the eggplant is ready to be harvested. This study uses deep learning techniques to predict the date of fruit maturity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!