Quest for renewable/eco-friendly energy sources has received immense focus in recent years. Current study involved consolidated bioprocessing of Saccharum spontaneum biomass (SSB) for biofuel-ethanol generation in a 'one pot consolidated bioprocess' (OPCB). SSB was pretreated with protic ionic liquid, triethylamine-bisulfate ([TEA][HSO]), saccharified in-situ with cellulase/xylanase enzymes, and the released sugars were fermented to ethanol. Pretreatment and saccharification processes were optimized under OPCB to achieve 2.70-fold increased sugar yield i.e. from 196.56 to 531.00 mg/g biomass. Fermentation of sugars yielded ethanol at 209.6 mg/g biomass at a bioconversion efficiency of 72.56 %. The pretreated SSB was comprehensively examined by/for XRD, NMR, SEM, FT-IR, and properties such as water retention capacity, surface area and cellulase adsorption ability to elucidate functional mechanisms of [TEA][HSO] pretreatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127784DOI Listing

Publication Analysis

Top Keywords

saccharum spontaneum
8
spontaneum biomass
8
eco-friendly novel
4
novel approach
4
approach bioconversion
4
bioconversion saccharum
4
biomass
4
biomass biofuel-ethanol
4
biofuel-ethanol consolidated
4
consolidated bioprocess
4

Similar Publications

Sugarcane ( spp.) is globally considered an important crop for sugar and biofuel production. During sugarcane production, the heavy reliance on chemical nitrogen fertilizer has resulted in low nitrogen use efficiency (NUE) and high loss.

View Article and Find Full Text PDF

Mitochondrial genome structural variants and candidate cytoplasmic male sterility-related gene in sugarcane.

BMC Genomics

January 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.

Background: Sugarcane is a crucial crop for both sugar and bioethanol production. The nobilization breeding and utilization of wild germplasm have significantly enhanced its productivity. However, the pollen sterility in Saccharum officinarum restricts its role to being a female parent in crosses with Saccharum spontaneum during nobilization breeding, resulting in a narrow genetic basis for modern sugarcane cultivars.

View Article and Find Full Text PDF

Mining of Candidate Genes and Developing Molecular Markers Associated with Pokkah Boeng Resistance in Sugarcane ( spp.).

Plants (Basel)

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.

Sugarcane Pokkah Boeng (PB), a fungal disease caused by spp., poses a significant threat to sugar industries globally. Breeding sugarcane varieties resistant to PB has become a priority, and the mining of PB resistance genes and the development of molecular markers provide a solid foundation for this purpose.

View Article and Find Full Text PDF

GRAS gene family plays multifunctional roles in plant growth, development, and resistance to various biotic and abiotic stresses, belonging to the plant-specific transcription factor (TF) family. In this study, a genome-wide survey and systematic analysis of the GRAS family in cultivated hybrid sugarcane ZZ1 () with economic and industrial importance was carried out. We identified 747 GRAS genes with complete structural domains and classified these into 11 subfamilies by phylogenetic analyses, exhibiting a diverse range of molecular weight and isoelectric points, thereby indicating a broad structural and functional spectrum.

View Article and Find Full Text PDF

Evolution and Function of MADS-Box Transcription Factors in Plants.

Int J Mol Sci

December 2024

National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China.

The MADS-box transcription factor (TF) gene family is pivotal in various aspects of plant biology, particularly in growth, development, and environmental adaptation. It comprises Type I and Type II categories, with the MIKC-type subgroups playing a crucial role in regulating genes essential for both the vegetative and reproductive stages of plant life. Notably, MADS-box proteins can influence processes such as flowering, fruit ripening, and stress tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!