A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vagus nerve stimulation-induced cognitive enhancement: Hippocampal neuroplasticity in healthy male rats. | LitMetric

Background: Vagus nerve stimulation (VNS) improves cognition in humans and rodents, but the effects of a single session of VNS on performance and plasticity are not well understood.

Objective: Behavioral performance and hippocampal (HC) electrophysiology/neurotrophin expression were measured in healthy adult rats after VNS paired training to investigate changes in cognition and synaptic plasticity.

Methods: Platinum/iridium electrodes were surgically implanted around the left cervical branch of the VN of anesthetized male Sprague-Dawley rats (N = 47). VNS (100 μs biphasic pulses, 30 Hz, 0.8 mA) paired Novel Object Recognition (NOR)/Passive Avoidance Task (PAT) were assessed 24 h after training and post-mortem tissue was collected 48 h after VNS (N = 28). Electrophysiology recordings were collected using a microelectrode array system to assess functional effects on HC slices 90 min after VNS (N = 19). Sham received the same treatment without VNS and experimenters were blinded.

Results: Stimulated rats exhibited improved performance in NOR (p < 0.05, n = 12) and PAT (p < 0.05, n = 14). VNS enhanced long-term potentiation (p < 0.05, n = 7-12), and spontaneous spike amplitude (p < 0.05, n = 7-12) and frequency (p < 0.05, n = 7-12) in the CA1. Immunohistochemical analysis found increased brain-derived neurotrophic factor expression in the CA1 (p < 0.05, n = 8-9) and CA2 (p < 0.01, n = 7-8).

Conclusion: These findings suggest that our VNS parameters promote synaptic plasticity and target the CA1, which may mediate the positive cognitive effects of VNS. This study significantly contributes to a better understanding of VNS mediated HC synaptic plasticity, which may improve clinical utilization of VNS for cognitive enhancement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brs.2022.08.001DOI Listing

Publication Analysis

Top Keywords

vagus nerve
8
vns
7
nerve stimulation-induced
4
stimulation-induced cognitive
4
cognitive enhancement
4
enhancement hippocampal
4
hippocampal neuroplasticity
4
neuroplasticity healthy
4
healthy male
4
rats
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!