Analysis of electric field efficacy and remediation performance of triclosan contaminated soil by Co-Fe/al oxidation electrodes coupled with peroxymonosulfate (PMS) in an ECGO system with diversified electrode configurations.

Chemosphere

Division II, Foundation of Taiwan Industry Service (Former Graduate Student), 1 F, No. 14, Alley 39, Lane 198, Shi-Wei Rd. Ta-An Dist., Taipei, Taiwan. Electronic address:

Published: November 2022

Triclosan (TCS) is commonly used as a biocide against bacterial and fungal infections. The overuse of TCS has resulted in its abundance in the natural environment. Sulfate radicals have been used for in-situ groundwater remediation because of their superior performance. In this study, Co-Fe/Al oxidation electrodes were prepared to investigate the effect of electrode configurations on TCS remediation using electrokinetic geooxidation (ECGO) technology coupled with peroxymonosulfate (PMS) in a soil system. The Co-Fe/Al electrodes catalyzed the activity of PMS by solid-phase Co to produce sulfate radicals. Four electrode configurations, named G1-G4, applying a potential gradient of 2 V/cm, were conducted for ten days in all experiments. Results showed that 14.2-66.2% of TCS remediation efficiency was observed. TCS was mainly degraded by the Co-Fe/Al electrode and sulfate radicals rather than being removed by the electroosmotic flow. The degradation efficiencies of the G4 system (66.0%) and the G2 or G3 system (36.6% or 64.4%, respectively) were much higher than that of the G1 system. (13.5%). Three regions (effective, ineffective, and enhanced) were classified to explore the effect of the electric field on TCS remediation. The arrangement of the honeycomb cells was related to the area of enhanced region in the system, in which the superior remediation performance of the TCS was found. Therefore, TCS remediation performance is highly related to the electrode configuration and honeycomb arrangement in the system. The seven-unit honeycomb system (G4) demonstrated a linear and centralized arrangement, resulting in fast migration and excellent degradation of the TCS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.135841DOI Listing

Publication Analysis

Top Keywords

tcs remediation
16
remediation performance
12
electrode configurations
12
sulfate radicals
12
tcs
9
electric field
8
co-fe/al oxidation
8
oxidation electrodes
8
coupled peroxymonosulfate
8
peroxymonosulfate pms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!