Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
. With the increasing survival of the congenital heart disease population, there is a growing need for in-depth understanding of blood circulation in these patients. Mock loops provide the opportunity for comprehensive hemodynamic studies without burden and risks for patients. This study aimed to evaluate the ability of the presented mock loop to mimic the hemodynamics of the pulmonary circulation with and without stenosis and the MR compatibility of the system.. A pulsatile pump with two chambers, separated by a flexible membrane, was designed and 3D printed. A cough assist device applied an alternating positive and negative pressure on the membrane. One adult, and three pediatric pulmonary bifurcations were 3D printed and incorporated in the setup. Two pediatric models had a 50% stenosis of the left branch. Bilateral compliance chambers allowed for individual compliance tuning. A reservoir determined the diastolic pressure. Two carbon heart valves guaranteed unidirectional flow. The positive pressure on the cough assist device was tuned until an adequate stroke volume was reached with a frequency of 60 bpm. Flow and pressure measurements were performed on the main pulmonary artery and the two branches. The MR compatibility of the setup was evaluated.. A stroke volume with a cardiac index of 2 l minmwas achieved in all models. Physiological pressure curves were generated in both normal and stenotic models. The mock loop was MR compatible.This MR compatible mock loop, closely resembles the pulmonary circulation thereby providing a controllable environment for hemodynamic studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/2057-1976/ac8993 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!