Bendable osteochondral allografts for patellar resurfacing: A finite element analysis of congruence.

J Biomech

Department of Mechanical Engineering, Columbia University, New York, NY, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA. Electronic address:

Published: September 2022

Osteochondral allograft (OCA) transplantation provides a safe and effective treatment option for large cartilage defects, but its use is limited partly due to the difficulty of matching articular surface curvature between donor and recipient. We hypothesize that bendable OCAs may provide better curvature matching for patella transplants in the patellofemoral joint (PFJ). This finite element study investigates PFJ congruence for unbent and bendable OCAs, at various flexion angles. Finite element models were created for 12 femur-patella OCA pairings. Two grooves were cut in each OCA bony substrate, allowing the articular layer to bend. PFJs with either unbent (OCA) or permanently bent (BOCA) allografts were articulated from 40 to 70 degrees flexion and contact area was calculated. OCAs and BOCAs were then shifted 6 mm distally toward the tibia (S-OCA, S-BOCA) to investigate the influence of proximal-distal alignment on congruence. On average, no significant difference in contact area was found between native PFJs and either OCAs or BOCAs (p > 0.25), indicating that both types of allografts restored native congruence. This result provides biomechanical support in favor of an emerging surgical procedure. S-BOCAs resulted in a significant increase in contact area relative to the remaining groups (p < 0.02). The fact that BOCAs produced equally good results implies that bendable allografts may prove useful in future surgical procedures, with the possibility of transplanting them with a small distal shift. Surgeons who are reluctant to use OCAs for resurfacing patellae based on curvature matching capabilities may be more amenable to adopting BOCAs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2022.111240DOI Listing

Publication Analysis

Top Keywords

finite element
12
contact area
12
bendable ocas
8
ocas bocas
8
bendable osteochondral
4
osteochondral allografts
4
allografts patellar
4
patellar resurfacing
4
resurfacing finite
4
element analysis
4

Similar Publications

Reconstruction of anterior talofibular ligament and posterior tibiotalar ligament enhance ankle stability after total talus replacement by finite element analysis.

Comput Methods Biomech Biomed Engin

January 2025

Key Laboratory of Advanced Design and Simulation Techniques for Special Equipment, Ministry of Education, Hunan University, Changsha, China.

Total talus replacement has been demonstrated to increase ankle instability. However, no studies have explored how to enhance postoperative stability. This study aims to explore the effect of collateral ligament reconstruction on ankle stability by finite element analysis.

View Article and Find Full Text PDF

: A previous study investigated the in vitro release of methylene blue (MB), a widely used cationic dye in biomedical applications, from nanocellulose/nanoporous silicon (NC/nPSi) composites under conditions simulating body fluids. The results showed that MB release rates varied significantly with the nPSi concentration in the composite, highlighting its potential for controlled drug delivery. To further analyze the relationship between diffusion dynamics and the MB concentration, this study developed a finite element (FE) method to solve Fick's equations governing the drug delivery system.

View Article and Find Full Text PDF

Trees are complex and dynamic living structures, where structural stability is essential for survival and for public safety in urban environments. Tree forks, as structural junctions, are key to tree integrity but are prone to failure under stress. The specific mechanical contributions of their internal conical structures remain largely unexplored.

View Article and Find Full Text PDF

Numerical Modelling of Hybrid Polymer Composite Frame for Selected Construction Parts and Experimental Validation of Mechanical Properties.

Polymers (Basel)

January 2025

Department of Material Science and Manufacturing Technology, Faculty of Engineering, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic.

This article is a numerical and experimental study of the mechanical properties of different glass, flax and hybrid composites. By utilizing hybrid composites consisting of natural fibers, the aim is to eventually reduce the percentage usage of synthetic or man-made fibers in composites and obtain similar levels of mechanical properties that are offered by composites using synthetic fibers. This in turn would lead to greener composites being utilized.

View Article and Find Full Text PDF

This study investigates the optimal design and operation of an underwater ultrasonic system for algae removal, focusing on the electromechanical load of Langevin-type piezoelectric transducers. These piezoelectric transducers, which operate in underwater environments, exhibit variations in electrical-mechanical impedance due to practical environmental factors, such as waterproof molding structures or variations in pressure and flow rates depending on the water depth. To address these challenges, we modeled the underwater load conditions using the finite element method and analyzed the impedance characteristics of the piezoelectric transducer under realistic environmental conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!