Phalanx morphology in salamanders: A reflection of microhabitat use, life cycle or evolutionary constraints?

Zoology (Jena)

Área Herpetología, Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), Miguel Lillo 251, S. M. de Tucumán, Argentina; Fundación Miguel Lillo, Miguel Lillo 251, S. M. de Tucumán, Argentina.

Published: October 2022

Morphological patterns are modeled by the interaction of functional, phylogenetic, ecological, and/or developmental constraints. In addition, the evolution of life cycle complexity can favor phenotypic diversity; however, the correlation between stages of development may constrain the evolution of some organs. Salamanders present microhabitat and life cycle diversity, providing an excellent framework for testing how these factors constrain phenotypic evolution. We reconstructed the morphological evolution of the terminal phalanx using a sample of 60 extinct and living species of salamanders. Using a geometric morphometric approach combined with comparative analyses, we further investigated the impact of phylogenetic, ecological, and/or life cycle factors on the shape of the terminal phalanx. We find that the phylogeny has some influence in determining the dorsal shape of the phalanges; whereas a relationship between microhabitat or life cycle and the dorsal and lateral shapes of the phalanx was not observed in the analyzed species. The allometric pattern found in the phalanx shape implies that small phalanges are more curved and with more truncated end than bigger phalanges. The evolutionary rate of phalanx shape was higher in the semiaquatic species, and the morphological disparity was significantly higher on biphasic groups. These results contradict the hypothesis that a complex life cycle constrains body shape. Finally, the phalanx shape of the salamander remains quite conserved from the Mesozoic. This configuration would allow them to occur in the different microhabitats occupied by the salamander lineages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.zool.2022.126040DOI Listing

Publication Analysis

Top Keywords

life cycle
24
microhabitat life
12
phalanx shape
12
phylogenetic ecological
8
ecological and/or
8
terminal phalanx
8
phalanx
7
life
6
cycle
6
shape
6

Similar Publications

The TIRAP protein is an adaptor protein in TLR signaling which links TLR2 and TLR4 to the adaptor protein Myd88. The transcriptomic profiles of zebrafish larvae from a , and mutant and the corresponding wild type controls under unchallenged developmental conditions revealed a specific involvement of in calcium homeostasis and myosin regulation. Metabolomic profiling showed that the mutation results in lower glucose levels, whereas a mutation leads to higher glucose levels.

View Article and Find Full Text PDF

Assessing the environmental impacts of food, food systems and diets is highly complex due to the multitude of processes involved, the uncertainty in assessment models, the variability in production systems and the large range of products available. No single assessment method alone can provide a complete evidence base. The increasing number of Life Cycle Assessment and food system analyses, and more recently the integration of planetary boundaries offer insights from which we can draw some robust high-level conclusions, whilst recognising there is a need for more detailed analysis to capture the inherent nuances of more location and context-specific situations.

View Article and Find Full Text PDF

Treatment with pegylated nanoliposomal irinotecan (nal-IRI) plus 5-fluorouracil/leucovorin (folinic acid; 5-FU/LV) has demonstrated remarkable efficacy for metastatic pancreatic ductal adenocarcinoma (PDAC) in clinical trials. However, real-world data on the effectiveness of nal-IRI+5-FU/LV is heterogeneous and is lacking in Spain. To assess the effectiveness and safety of nal-IRI+5-FU/LV in real-life PDAC patients in Spain.

View Article and Find Full Text PDF

Increasing attention to sustainability and cost-effectiveness in energy storage sector has catalyzed the rise of rechargeable Zinc-ion batteries (ZIBs). However, finding replacement for limited cycle-life Zn-anode is a major challenge. Molybdenum disulfide (MoS), an insertion-type 2D layered material, has shown promising characteristics as a ZIB anode.

View Article and Find Full Text PDF

Flexible zinc-air batteries (FZABs) present a promising solution for the next generation of power sources in wearable electronics, owing to their high energy density, cost-effectiveness, and safety. However, solid-state electrolytes for FZABs continue to face challenges related to rapid water loss and low ionic conductivity. In this study, a hydrophilic and stable tetramethylguanidine-modified graphene oxide as an additive, which is incorporated into sodium polyacrylate to develop a high-performance gel polymer electrolyte (GPE), is designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!