The multifunctional catalytic globin dehaloperoxidase (DHP) from the marine worm Amphitrite ornata was shown to catalyze the HO-dependent oxidation of 2,4- and 2,6-dihalophenols (DXP; X = F, Cl, Br). Product identification by LC-MS revealed multiple monomeric products with varying degrees of oxidation and/or dehalogenation, as well as oligomers with n up to 6. Mechanistic and O-labeling studies demonstrated sequential dihalophenol oxidation via peroxidase and peroxygenase activities. Binding studies established that 2,4-DXP (X = Cl, Br) have the highest affinities of any known DHP substrate. X-ray crystallography identified different binding positions for 2,4- and 2,6-DXP substrates in the hydrophobic distal pocket of DHP. Correlation between the number of halogens and the substrate binding orientation revealed a halogen-dependent binding motif for mono- (4-halophenol), di- (2,4- and 2,6-dihalophenol) and trihalophenols (2,4,6-trihalopenol). Taken together, the findings here on dihalophenol reactivity with DHP advance our understanding of how these compounds bridge the inhibitory and oxidative functions of their mono- and trihalophenol counterparts, respectively, and provide further insight into the protein structure-function paradigm relevant to multifunctional catalytic globins in comparison to their monofunctional analogs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2022.111944DOI Listing

Publication Analysis

Top Keywords

amphitrite ornata
8
24- 26-dihalophenols
8
multifunctional catalytic
8
bridging functional
4
functional gap
4
gap reactivity
4
reactivity inhibition
4
inhibition dehaloperoxidase
4
dehaloperoxidase amphitrite
4
ornata mechanistic
4

Similar Publications

The mechanism of autoreduction in Dehaloperoxidase-A.

Biochem Biophys Res Commun

January 2025

Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA. Electronic address:

Hemoglobin and myoglobin are known to undergo autoxidation, in which the oxyferrous form of the heme is oxidized to the ferric state by O. Dehaloperoxidase-A (DHP-A), a multifunctional catalytic hemoglobin from Amphitrite ornata is an exception and is observed to undergo the reverse process, during which the ferric heme is spontaneously reduced to the oxyferrous form under aerobic conditions. The high reduction potential of DHP (+202 mV at pH 7.

View Article and Find Full Text PDF

The multifunctional catalytic hemoglobin from the terebellid polychaete , also named dehaloperoxidase (DHP), utilizes the typical oxygen transport function in addition to four observed activities involved in substrate oxidation. The multifunctional ability of DHP is presently a rare observation, and there exists a limitation for how novel dehaloperoxidases can be identified from macrobenthic infauna. In order to discover more infaunal DHP-bearing candidates, we have devised a facilitated method for an accurate taxonomic identification that places visual and molecular taxonomic approaches in parallel.

View Article and Find Full Text PDF

The enzyme dehaloperoxidase (DHP) found in the marine worm Amphitrite ornata is capable of enzymatic peroxidation of 2,4-dichlorophenol (DCP) and 2,4-dibromophenol (DBP). There is also at least one parallel oxidative pathway and the major products 2-chloro-1,4-benzoquinone (2-ClQ) and 2-bromo-1,4-benzoquinone (2-BrQ) undergo aspontaneous secondary hydroxylation reaction. The oxidation and hydroxylation reactions have been monitored by UV-visible spectroscopy, High Performance Liquid Chromatography (HPLC), and mass spectrometry.

View Article and Find Full Text PDF

Comparative study of the binding and activation of 2,4-dichlorophenol by dehaloperoxidase A and B.

J Inorg Biochem

October 2023

Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America. Electronic address:

The dehaloperoxidase-hemoglobin (DHP), first isolated from the coelom of a marine terebellid polychaete, Amphitrite ornata, is an example of a multi-functional heme enzyme. Long known for its reversible oxygen (O) binding, further studies have established DHP activity as a peroxidase, oxidase, oxygenase, and peroxygenase. The specific reactivity depends on substrate binding at various internal and external binding sites.

View Article and Find Full Text PDF

Dehaloperoxidase Catalyzed Stereoselective Synthesis of Cyclopropanol Esters.

J Org Chem

June 2023

Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York14627, United States.

Chiral cyclopropanols are highly desirable building blocks for medicinal chemistry, but the stereoselective synthesis of these molecules remains challenging. Here, a novel strategy is reported for the diastereo- and enantioselective synthesis of cyclopropanol derivatives via the biocatalytic asymmetric cyclopropanation of vinyl esters with ethyl diazoacetate (EDA). A dehaloperoxidase enzyme from was repurposed to catalyze this challenging cyclopropanation reaction, and its activity and stereoselectivity were optimized via protein engineering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!