Herein, with two-dimensional (2D) borocarbonitride (BCN) as a metal- and plasmon-free surface-enhanced Raman scattering (SERS) platform, we demonstrate a band structure engineering strategy to facilitate the charge transfer process for an enhanced SERS response. Especially, when the conduction band of the BCN substrate is tuned to align with the LUMO of the target molecule, remarkable SERS performance is achieved, ascribed to the borrowing effect from the vibronic coupling of resonances through the Herzberg-Teller coupling term. Meanwhile, fluorescence quenching is achieved due to the efficient charge transfer between the BCN substrate and target molecule. Consequently, BCN can accurately detect 20 kinds of trace chemical and bioactive analytes. Moreover, BCN exhibits excellent thermal and chemical stability, which can not only withstand high-temperature (300 °C) heating in the air but also resist long-term corrosion in harsh acid (pH = 0, HCl) and base (pH = 14, NaOH). This work provides new insight into band structure engineering in promoting the SERS performance of plasmon- and metal-free semiconductor substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c01825 | DOI Listing |
Sensors (Basel)
January 2025
University of Zagreb Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia.
This paper introduces a novel method for measuring the dielectric permittivity of materials within the microwave and millimeter wave frequency ranges. The proposed approach, classified as a guided wave transmission system, employs a periodic transmission line structure characterized by mirror/glide symmetry. The dielectric permittivity is deduced by measuring the transmission properties of such structure when presence of the dielectric material breaks the inherent symmetry of the structure and consequently introduce a stopband in propagation characteristic.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China.
In this paper, a new sensor structure is designed, which consists of a metal-insulator-metal (MIM) waveguide and a circular protrusion and a rectangular triangular cavity (CPRTC). The characterization of nanoscale sensors is considered using an approximate numerical method (finite element method). The simulation results show that the sharp asymmetric resonance generated by the interaction between the discrete narrow-band mode and the continuous wideband mode is called Fano resonance.
View Article and Find Full Text PDFMolecules
January 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China.
Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
To provide insight into the interface structure in Ti particle-reinforced Mg matrix composites, this study investigates the inherent Mg/Ti interface structure formed during the solidification of supercooled Mg melt on a (0001)Ti substrate using ab initio molecular dynamics (AIMD) simulations and density function theory (DFT) calculation. The resulting interface exhibits an orientation relationship of 0001Mg//0001Ti with a lattice mismatch of approximately 8%. Detailed characterizations reveal the occurrences of 0001Mg plane rotation and vacancy formation to overcome the lattice mismatch at the inherent Mg/Ti interface while allowing Mg atoms to occupy the energetically favorable hollow sites above the Ti atomic layer.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
Recently, ultrafast laser direct writing has become an effective method for preparing flexible films with micro-nano structures. However, effective control of laser parameters to obtain acceptable micro-nano structures and the effect of micro-nano structure sizes on function of the film remain challenges. Additionally, flexible films with high X-band transmittance are urgently required in aerospace and other fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!