Therapy of -mutant melanoma with selective inhibitors of BRAF (BRAFi) and MEK (MEKi) represents a major clinical advance but acquired resistance to therapy has emerged as a key obstacle. To date, no clinical approaches successfully resensitize to BRAF/MEK inhibition. Here, we develop a therapeutic strategy for melanoma using bromosporine, a bromodomain inhibitor. Bromosporine (bromo) monotherapy produced significant anti-tumor effects against established melanoma cell lines and patient-derived xenografts (PDXs). Combinatorial therapy involving bromosporine and cobimetinib (bromo/cobi) showed synergistic anti-tumor effects in multiple BRAFi-resistant PDX models. The bromo/cobi combination was superior in vivo to standard BRAFi/MEKi therapy in the treatment-naive -mutant setting and to MEKi alone in the setting of immunotherapy-resistant - and -mutant melanoma. RNA sequencing of xenografts treated with bromo/cobi revealed profound down-regulation of genes critical to cell division and mitotic progression. Bromo/cobi treatment resulted in marked DNA damage and cell-cycle arrest, resulting in induction of apoptosis. These studies introduce bromodomain inhibition, alone or combined with agents targeting the mitogen activated protein kinase pathway, as a rational therapeutic approach for melanoma refractory to standard targeted or immunotherapeutic approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407673PMC
http://dx.doi.org/10.1073/pnas.2206824119DOI Listing

Publication Analysis

Top Keywords

bromodomain inhibition
8
-mutant melanoma
8
anti-tumor effects
8
melanoma
6
inhibition overcomes
4
overcomes treatment
4
treatment resistance
4
resistance distinct
4
distinct molecular
4
molecular subtypes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!