Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: This study investigated the surface characteristics of denture base resin coatings prepared using a novel silica-based film containing hinokitiol and assessed the effect of this coating on Candida albicans adhesion and growth.
Methods: Silica-based coating solutions (control solution; CS) and CS containing hinokitiol (CS-H) were prepared. C. albicans biofilm formed on denture base specimens coated with each solution and these uncoated specimens (control) were analyzed using colony-forming unit (CFU) assay, fluorescence microscopy, and scanning electron microscopy (SEM). Specimen surfaces were analyzed by measuring the surface roughness and wettability and with Fourier-transform infrared (FT-IR) and proton nuclear magnetic resonance (H NMR). Stability of coated specimens was assessed via immersion in water for 1 week for each group (control-1w, CS-1w, and CS-H-1w) followed by CFU assay, measurement of surface roughness and wettability, and FT-IR.
Results: CS-H and CS-H-1w contained significantly lower CFUs than those present in the control and control-1w, which was also confirmed via SEM. Fluorescence microscopy from the CS-H group identified several dead cells. The values of surface roughness from coating groups were significantly less than those from the control and control-1w. The surface wettability from all coating groups exhibited high hydrophobicity. FT-IR analyses demonstrated that specimens were successfully coated, and H NMR analyses showed that hinokitiol was incorporated inside CS-H.
Conclusions: A silica-based denture coating that incorporates hinokitiol inhibits C. albicans growth on denture.
Clinical Relevance: We provide a novel antifungal denture coating which can be helpful for the treatment of denture stomatitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00784-022-04670-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!