Herein we describe our investigation into the electronic structure of the first isolated monometallic iron azametallacyclobutene complex. Computational analysis through density functional theory calculations reveals electron delocalization throughout the four atoms of the ring system, in line with experimental observations and supporting the classification of this complex as a conjugated metallacycle. The results of this study also point to significant contribution from an imine-substituted iron carbene resonance structure to the overall bonding picture for the azametallacyclobutene. Accordingly, this complex participates in carbene-like reactivity in the presence of an isocyanide substrate to generate a ketenimine product. The related reaction with carbon monoxide leads to the isolation of a five-membered metallacycle that is analogous to the proposed intermediate in ketenimine formation, and confirms the α-carbon as the site of reactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.2c01980DOI Listing

Publication Analysis

Top Keywords

azametallacyclobutene complex
12
carbene-like reactivity
8
iron azametallacyclobutene
8
electronic structure
8
reactivity iron
4
complex
4
complex insights
4
insights electronic
4
structure describe
4
describe investigation
4

Similar Publications

Herein we describe our investigation into the electronic structure of the first isolated monometallic iron azametallacyclobutene complex. Computational analysis through density functional theory calculations reveals electron delocalization throughout the four atoms of the ring system, in line with experimental observations and supporting the classification of this complex as a conjugated metallacycle. The results of this study also point to significant contribution from an imine-substituted iron carbene resonance structure to the overall bonding picture for the azametallacyclobutene.

View Article and Find Full Text PDF

The asymmetric bis-imido structure and the lability of the diethyl ether linkage in complex 1 provide a niobium complex that undergoes regioselective [4+2] cycloaddition reactions with an α,β-unsaturated ketone and cycloaddition reactions that involve bond formation to the MAD ligand (MonoAzabutaDiene). DFT calculations have been used to support an initial azametallacyclobutene intermediate in the alkyne reaction.

View Article and Find Full Text PDF

Mechanistic Investigation of Cycloreversion/Cycloaddition Reactions between Zirconocene Metallacycle Complexes and Unsaturated Organic Substrates.

Organometallics

April 2001

Department of Chemistry and Center for New Directions in Organic Synthesis (CNDOS), University of California, Berkeley, California 94720-1460.

Treatment of the diazametallacycle Cp(2)Zr(N(t-Bu)C=N(SiMe(3))N(SiMe(3))) (4a) with diphenylacetylene resulted in the formation of the azametallacyclobutene Cp(2)Zr(N(t-Bu)C(Ph)=C(Ph)) (6a) and Me(3)SiN=C=NSiMe(3) in high yield. A kinetic study using UV-vis spectroscopy was carried out on the transformation. Saturation kinetic behavior was observed for the system, which is supportive of a mechanism that involves a reversible formal [2 + 2] retrocycloaddition of 4a to generate the transient imido species Cp(2)Zr=N-t-Bu (7a) and Me(3)-SiN=C=NSiMe(3).

View Article and Find Full Text PDF

By kinetically stabilizing imidozirconocene complexes through the use of a sterically demanding ligand, or by generating a more thermodynamically stable resting state with addition of diphenylacetylene, we have developed transition metal-catalyzed imine metathesis reactions that are mechanistically analogous to olefin metathesis reactions catalyzed by metal carbene complexes. When 5 mol % of Cp*Cp(THF)Zr=N(t)Bu is used as the catalyst precursor in the metathesis reaction between PhCH=NPh and p-TolCH=N-p-Tol, a 1:1:1:1 equilibrium mixture with the two mixed imines p-TolCH=NPh and PhCH=N-p-Tol is generated in C(6)D(6) at 105 degrees C. The catalyst was still active after 20 days with an estimated 847 turnovers (t(1/2) 170 m; TON = 1.

View Article and Find Full Text PDF

Azametallacyclobutene Cp(2)ZrN-t-BuCEt=CEt (1) underwent an insertion reaction with CO to form the acyl complex 2 (Cp(2)Zr(N-t-BuCEtCEtCO), 67% yield). The addition of acetone to azametallacyclobutene 3 (Cp(2)Zr(NArCMeCPh), Ar = 2,6-dimethylphenyl) yielded the N-bonded enamine and O-bonded enolate complex of zirconocene 4 (Cp(2)Zr(NArCMeCPhH)(OCMeCH(2)), 76% yield). The addition of aldehydes RCOH to metallacycle 3 resulted in the insertion of the aldehyde into the Zr-C bond to form complexes Cp(2)Zr(NArCMeCPhCRHO) (8a) and Cp(2)Zr(NArCMeCPhC(i-Pr)HO (9) in 85% (R = Ph) and 73% yields, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!