Extracellular DNA-binding proteins such as histones are danger-associated molecular pattern released by the injured tissues in trauma and sepsis settings, which trigger host immune response and vascular dysfunction. Molecular events leading to histone-induced endothelial cell (EC) dysfunction remain poorly understood. This study performed comparative analysis of H1, H2A, H2B, H3, and H4 histone subunits effects on human pulmonary EC permeability and inflammatory response. Analysis of transendothelial electrical resistance and EC monolayer permeability for macromolecues revealed that H3 and H4, but not H1, H2A, or H2B caused dose-dependent EC permeability accompanied by disassembly of adherens junctions. At higher doses, H3 and H4 activated nuclear factor kappa B inflammatory cascade leading to upregulation EC adhesion molecules ICAM1, VCAM1, E-selectin, and release of inflammatory cytokines. Inhibitory receptor analysis showed that toll-like receptor (TLR) 4 but not TLR1/2 or receptor for advanced glycation end inhibition significantly attenuated deleterious effects of H3 and H4 histones. Inhibitor of Rho-kinase was without effect, while inhibition of Src kinase caused partial preservation of cell-cell junctions, H3/H4-induced permeability and inflammation. Deleterious effects of H3/H4 were blocked by heparin. Activation of Epac-Rap1 signaling restored EC barrier properties after histone challenge. Intravenous injection of histones in mice caused elevation of inflammatory markers and increased vascular leak. Post-treatment with pharmacological Epac/Rap1 activator suppressed injurious effects of histones in vitro and in vivo. These results identify H3 and H4 as key histone subunits exhibiting deleterious effects on pulmonary vascular endothelium via TLR4-dependent mechanism. In conclusion, elevation of circulating histones may represent a serious risk of exacerbated acute lung injury (ALI) and multiple organ injury during severe trauma and infection.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202200303RRDOI Listing

Publication Analysis

Top Keywords

histone subunits
12
deleterious effects
12
permeability inflammation
8
h2a h2b
8
effects histones
8
permeability
5
histones
5
effects
5
mechanisms pulmonary
4
pulmonary endothelial
4

Similar Publications

Introduction: This study designed to examine whether social/ environmental experiences can induce the epigenetic modification, and influence the associated physiology and behaviour. To test this, we have used social stress [prenatal stress (PNS)] model and then housed at environmental enrichment (EE) condition to evaluate the interaction between specific epigenetic modification and its influence on behaviour.

Methods: Pregnant rats were randomly divided into a control group, PNS group, and PNS+EE group.

View Article and Find Full Text PDF

DNA-Dependent Protein Kinase Catalytic Subunit Prevents Ferroptosis in Retinal Pigment Epithelial Cells.

Invest Ophthalmol Vis Sci

January 2025

Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.

Purpose: The purpose of this study was to investigate the activated core kinases involved in the DNA damage responses (DDR) during ferroptosis of retinal pigment epithelial (RPE) cells in vitro and their regulatory effects on ferroptosis.

Methods: Ferroptosis was induced by erastin in induced RPE (iRPE) cells derived from human umbilical cord mesenchymal stem cells (hUCMSCs), hUCMSCs, and induced pluripotent stem cell-derived RPE (iPSC-RPE) cells. CCK8 was employed to measure the cell viability.

View Article and Find Full Text PDF

The ribotoxic stress response is a pathway that gets activated when ribosomes get impaired, leading to disruptions in protein synthesis, increased inflammatory signaling, and cell death if left unresolved. Taraxacum can induce apoptosis-associated ribosomal RNA (rRNA) cleavage, however, the exact working mechanism of Taraxacum-induced rRNA cleavage remains unclear. In this study, we used the RNA integrity (RIN) value and 28S/18S ratio to confirm the integrity of experiments.

View Article and Find Full Text PDF

Characterizing the regulatory effects of H2A.Z and SWR1-C on gene expression during hydroxyurea exposure in Saccharomyces cerevisiae.

PLoS Genet

January 2025

Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada.

Chromatin structure and DNA accessibility are partly modulated by the incorporation of histone variants. H2A.Z, encoded by the non-essential HTZ1 gene in S.

View Article and Find Full Text PDF

A dual role of Cohesin in DNA DSB repair.

Nat Commun

January 2025

Department of Hematopoietic Biology & Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Cells undergo tens of thousands of DNA-damaging events each day. Defects in repairing double-stranded breaks (DSBs) can lead to genomic instability, contributing to cancer, genetic disorders, immunological diseases, and developmental defects. Cohesin, a multi-subunit protein complex, plays a crucial role in both chromosome organization and DNA repair by creating architectural loops through chromatin extrusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!