AI Article Synopsis

  • Tissue clearing combined with light-sheet microscopy (LSFM) allows for high-resolution imaging of entire mouse brains, revealing structural changes related to genetic or environmental factors that traditional microscopy may overlook.
  • This study introduces "NuMorph," a set of tools that efficiently quantifies all nuclei in postnatal mouse brains, enhancing data analysis beyond just counting sparse cell populations.
  • By utilizing publicly available protocols and software, researchers can easily apply these advanced imaging and analysis techniques to better understand brain organization and cell-type distribution.

Article Abstract

Tissue clearing followed by light-sheet microscopy (LSFM) enables cellular-resolution imaging of intact brain structure, allowing quantitative analysis of structural changes caused by genetic or environmental perturbations. Whole-brain imaging results in more accurate quantification of cells and the study of region-specific differences that may be missed with commonly used microscopy of physically sectioned tissue. Using light-sheet microscopy to image cleared brains greatly increases acquisition speed as compared to confocal microscopy. Although these images produce very large amounts of brain structural data, most computational tools that perform feature quantification in images of cleared tissue are limited to counting sparse cell populations, rather than all nuclei. Here, we demonstrate NuMorph (Nuclear-Based Morphometry), a group of analysis tools, to quantify all nuclei and nuclear markers within annotated regions of a postnatal day 4 (P4) mouse brain after clearing and imaging on a light-sheet microscope. We describe magnetic resonance imaging (MRI) to measure brain volume prior to shrinkage caused by tissue clearing dehydration steps, tissue clearing using the iDISCO+ method, including immunolabeling, followed by light-sheet microscopy using a commercially available platform to image mouse brains at cellular resolution. We then demonstrate this image analysis pipeline using NuMorph, which is used to correct intensity differences, stitch image tiles, align multiple channels, count nuclei, and annotate brain regions through registration to publicly available atlases. We designed this approach using publicly available protocols and software, allowing any researcher with the necessary microscope and computational resources to perform these techniques. These tissue clearing, imaging, and computational tools allow measurement and quantification of the three-dimensional (3D) organization of cell-types in the cortex and should be widely applicable to any wild-type/knockout mouse study design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912361PMC
http://dx.doi.org/10.3791/64096DOI Listing

Publication Analysis

Top Keywords

tissue clearing
20
light-sheet microscopy
16
mouse brains
8
clearing light-sheet
8
computational tools
8
clearing imaging
8
tissue
7
imaging
6
clearing
6
microscopy
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!