The complexation of cyclo(Ala*-Ala) with the cobaltous ions in aqueous solution was investigated by 17O and 14N n.m.r. spectroscopy. The 17O and 14N transverse relaxation time (T2p) and chemical shift (delta omega a) of cyclo(Ala*-Ala) were measured as a function of the temperature at pH = 7.03 +/- 0.02, and pH = 6.45 +/- 0.02, and as a function of pH at room temperature. No effects of pH on the transverse relaxation time and chemical shift were observed. Complementary 17O studies of the solvent water molecules were also carried out. The hyperfine coupling constant and the entropy and enthalpy of activation for the exchange of cyclo(Ala*-Ala) and water molecules between the coordinated and noncoordinated states were determined by least-square fit of theoretical equation for the chemical shift delta omega a to experimental data. The hyperfine coupling constant of the peptide bound oxygen was determined to be (-1.6 +/- 0.1) X 10(5) Hz and the entropy and enthalpy (32.0 +/- 3.0) kJ/mol and (-12.0 +/- 1.0) e.u, respectively. Information obtained from 17O n.m.r. study allows some inferences concerning the probable coordination sphere of the cobaltous ion. There are three types of complexes: Co(H2O)6(2+), CoL X 5H2O and CoL2 X 4H2O, with relative concentrations 19.9%, 2.9%, and 77.2%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-3011.1987.tb02267.xDOI Listing

Publication Analysis

Top Keywords

17o 14n
12
chemical shift
12
14n nmr
8
aqueous solution
8
transverse relaxation
8
relaxation time
8
shift delta
8
delta omega
8
+/- 002
8
water molecules
8

Similar Publications

Supramolecular chemistry explores non-covalent interactions between molecules, and it has facilitated the design of functional materials and understanding of molecular self-assembly processes. We investigate a captivating class of supramolecular structures, the guanidinium and hydrogen carbonate rosette layers. These rosette layers are composed of guanidinium cations and carbonate anions, exhibiting intricate hydrogen-bonding networks that lead to their unique structural properties.

View Article and Find Full Text PDF

Effect of Dynamical Motion in Calculations of Solid-State Nuclear Magnetic and Nuclear Quadrupole Resonance Spectra.

Chem Mater

August 2024

Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

Solid-state nuclear magnetic resonance (SSNMR) and nuclear quadrupole resonance (NQR) spectra provide detailed information about the electronic and atomic structure of solids. Modern methods such as density functional theory (DFT) can be used to calculate NMR and NQR spectra from first-principles, providing a meaningful avenue to connect theory and experiment. Prediction of SSNMR and NQR spectra from DFT relies on accurate calculation of the electric field gradient (EFG) tensor associated with the potential of electrons at the nuclear centers.

View Article and Find Full Text PDF

A combined solid-state H, C, O NMR and periodic DFT study of hyperfine coupling tensors in paramagnetic copper(II) compounds.

Solid State Nucl Magn Reson

August 2024

Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada. Electronic address:

We report solid-state H, C, and O NMR determination of hyperfine coupling tensors (A-tensors) in several paramagnetic Cu(II) (d, S = 1/2) complexes: trans-Cu(DL-Ala)·HO, Cu([1-C]acetate)·HO, Cu([2-C]acetate)·HO, and Cu(acetate)·HO. Using these new experimental results and some A-tensor data available in the literature for trans-Cu(L-Ala) and KCuCl·2HO, we were able to examine the accuracy of A-tensor computation from a periodic DFT method implemented in the BAND program. We evaluated A-tensors on H (I = 1/2), C (I = 1/2), N (I = 1), O (I = 5/2), K (I = 3/2), Cl (I = 3/2), and Cu (I = 3/2) nuclei over a range spanning more than 3 orders of magnitude.

View Article and Find Full Text PDF

Although the dynamics of telomeres during the life expectancy of normal cells has been extensively studied, there are still some unresolved issues regarding this research field. For example, the conditions required for telomere shortening leading to malignant transformations are not fully understood. In this work, we mass analyzed DNA of normal and cancer cells for comparing telomere isotopic compositions of white blood cells and cancer cells.

View Article and Find Full Text PDF

There is growing interest in using low-field magnetic resonance experiments for routine chemical characterization. Earth's field NMR is one such technique that can garner structural information and enable sample differentiation with low cost and highly portable designs. The resulting NMR spectra are primarily influenced by J-couplings, resulting in so-called J-coupled spectra (JCS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!