Objective: To review four types of three-dimensional imaging devices: intraoral scanners, extraoral scanners, cone-beam computed tomography (CBCT), and facial scanners, in terms of their development, technologies, advantages, disadvantages, accuracy, influencing factors, and applications in dentistry.

Methods: PubMed (National Library of Medicine) and Google Scholar databases were searched. Additionally, the scanner manufacturers' websites were accessed to obtain relevant data. Four authors independently selected the articles, books, and websites. To exclude duplicates and scrutinize the data, they were uploaded to Mendeley Data. In total, 135 articles, two books, and 17 websites were included.

Results: Research and clinical practice have shown that oral and facial scanners and CBCT can be used widely in various areas of dentistry with high accuracy.

Conclusion: Although further advancement of these devices is desirable, there is no doubt that digital technology represents the future of dentistry. Furthermore, the combined use of different devices may bring dentistry into a new era. These four devices will play a significant role in clinical utility with high accuracy. The combined use of these devices should be explored further.

Clinical Significance: The four devices will play a significant role in clinical use with high accuracy. The combined use of these devices should be explored further.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jerd.12955DOI Listing

Publication Analysis

Top Keywords

combined devices
12
three-dimensional imaging
8
devices
8
imaging devices
8
facial scanners
8
articles books
8
books websites
8
devices will
8
will play
8
play role
8

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

A Comprehensive Review on Exploring the Potential of Phytochemicals and Biogenic Nanoparticles for the Treatment of Antimicrobial-Resistant Pathogenic Bacteria.

Curr Microbiol

January 2025

Molecular Biology Laboratory, Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India.

Antimicrobial resistance (AMR) is an escalating global health concern that results in approximately 700,000 deaths annually owing to drug-resistant infections. It compromises the effectiveness of conventional antibiotics, as well as fundamental medical procedures, such as surgery and cancer treatment. Phytochemicals, natural plant constituents, and biogenic nanoparticles synthesized through biological processes are pharmacological alternatives for supplementing or replacing traditional antibiotics.

View Article and Find Full Text PDF

Guest-Molecule-Induced Glass-Crystal Transition in Organic-Inorganic Hybrid Antimony Halides.

Inorg Chem

January 2025

College of Chemistry and Materials Science, College of Environmental and Resource Sciences, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.

The glassy state of inorganic-organic hybrid metal halides combines their excellent optoelectronic properties with the outstanding processability of glass, showcasing unique application potential in solar devices, display technologies, and plastic electronics. Herein, by tailoring the organic cation from -phenylpiperazine to dimethylamine gradually, four types of zero-dimensional antimony halides are obtained with various optical and thermal properties. The guest water molecules in crystal (-phenylpiperazine)SbCl·Cl·5HO lead to the largest distortion of the Sb-halogen unit, resulting in the red emission different from the yellow emission of other compounds.

View Article and Find Full Text PDF

Advancements in xenotransplantation intersecting with modern machine perfusion technology offer promising solutions to patients with liver failure providing a valuable bridge to transplantation and extending graft viability beyond current limitations. Patients facing acute or acute chronic liver failure, post-hepatectomy liver failure, or fulminant hepatic failure often require urgent liver transplants which are severely limited by organ shortage, emphasizing the importance of effective bridging approaches. Machine perfusion is now increasingly used to test and use genetically engineered porcine livers in translational studies, addressing the limitations and costs of non-human primate models.

View Article and Find Full Text PDF

Background: This study assessed stress distributions in simulated mandibular molars filled with various materials after the removal of fractured instruments from the apical thirds of the root canals.

Methods: Finite element models of the mesial and distal root canals were created, where fractured instruments were assumed to be removed using a staging platform established with a modified Gates-Glidden bur (Woodpecker, Guangxi, P.R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!