Background: Experimental evidence suggests a key role of SIRT1 (silent information regulator 1) in age- and metabolic-related vascular dysfunction. Whether these effects hold true in the human microvasculature is unknown. We aimed to investigate the SIRT1 role in very early stages of age- and obesity-related microvascular dysfunction in humans.
Methods: Ninety-five subjects undergoing elective laparoscopic surgery were recruited and stratified based on their body mass index status (above or below 30 kg/m) and age (above or below 40 years) in 4 groups: Young Nonobese, Young Obese, Old Nonobese, and Old Obese. We measured small resistance arteries' endothelial function by pressurized micromyography before and after incubation with a SIRT1 agonist (SRT1720) and a mitochondria reactive oxygen species (mtROS) scavenger (MitoTEMPO). We assessed vascular levels of mtROS and nitric oxide availability by confocal microscopy and vascular gene expression of SIRT1 and mitochondrial proteins by qPCR. Chromatin immunoprecipitation assay was employed to investigate SIRT1-dependent epigenetic regulation of mitochondrial proteins.
Results: Compared with Young Nonobese, obese and older patients showed lower vascular expression of SIRT1 and antioxidant proteins (FOXO3 [forkhead box protein O3] and SOD2) and higher expression of pro-oxidant and aging mitochondria proteins p66 and Arginase II. Old Obese, Young Obese and Old Nonobese groups endothelial dysfunction was rescued by SRT1720. The restoration was comparable to the one obtained with mitoTEMPO. These effects were explained by SIRT1-dependent chromatin changes leading to reduced p66 expression and upregulation of proteins involved in mitochondria respiratory chain.
Conclusions: SIRT1 is a novel central modulator of the earliest microvascular damage induced by age and obesity. Through a complex epigenetic control mainly involving p66 and Arginase II, it influences mtROS levels, NO availability, and the expression of proteins of the mitochondria respiratory chain. Therapeutic modulation of SIRT1 restores obesity- and age-related endothelial dysfunction. Early targeting of SIRT1 might represent a crucial strategy to prevent age- and obesity-related microvascular dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426744 | PMC |
http://dx.doi.org/10.1161/CIRCRESAHA.122.320888 | DOI Listing |
Heart Fail Rev
January 2025
Department of Cardiology, Cardiology I, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
Heart failure is a prevalent global health issue. Heart failure with preserved ejection fraction (HFpEF), which already represents half of all heart cases worldwide, is projected to further increase, driven by aging populations and rising cardiovascular risk factors. Effective therapies for HFpEF remain limited, particularly due to its pathophysiological heterogeneity and incomplete understanding of underlying pathomechanisms and implications.
View Article and Find Full Text PDFBackground: High levels of catecholamines are cardiotoxic and associated with stress-induced cardiomyopathies. Septic patients are routinely exposed to endogenously released and exogenously administered catecholamines, which may alter cardiac function and perfusion causing ischemia. Early during human septic shock, left ventricular ejection fraction (LVEF) decreases but normalizes in survivors over 7-10 days.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan.
Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies.
View Article and Find Full Text PDFAm J Hypertens
January 2025
3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Greece.
Background: Changes in retinal vessel caliber are crucial for detecting early retinopathy, a significant cause of blindness in individuals with Diabetes Mellitus type 2 (T2DM). This study aims to evaluate the changes in retinal vessel caliber and identify factors associated with these changes in recently diagnosed T2DM patients.
Methods: The study included newly diagnosed T2DM patients (within 6 months of diagnosis) who were free of antidiabetic treatment (except metformin) and matched individuals based on age and blood pressure (BP).
Diabetes
January 2025
Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!