Unconditioned Symmetric Solid-Contact Electrodes for Potentiometric Sensing.

Anal Chem

Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland.

Published: August 2022

In potentiometric sensing, the preparation of the electrodes preceding a measurement is often the most time-consuming step. Eliminating the conditioning process can significantly speed up the preparation procedure, but it can also compromise the need for proper pre-equilibration of the membrane. We propose here a symmetric setup to address this challenge with an identical indicator and reference elements measured against each other, thereby compensating for potential drift. This strategy allows one to achieve potentiometric measurements using non-conditioned all-solid-state ion-selective electrodes for the detection of nitrate and potassium ions with Nernstian response slopes and detection ranges identical to those of conventional systems. To establish symmetry, a set of solid-contact ion-selective electrodes placed in a reference cell is measured against a set of identical electrodes in a sample cell. By subtracting the potentials between the two cells, potential instabilities not directly relevant to the measuring sample are eliminated, giving minimal potential drifts and stable 5-day potential responses. The value of the nitrate-selective electrodes in the symmetric setup had a standard deviation of just 3 mV for the 5-day period in contrast to 19 mV in the asymmetric system, clearly demonstrating the influence of the conditioning step which is almost eliminated in the former system. During the 20 h potential monitoring experiments, the drift dropped to below 0.3 mV/min in less than 6 min, as opposed to an average time of 35 min for the asymmetric system. The applicability of the proposed setup was successfully demonstrated with the measurement of nitrate in a river water sample, where a potential drift lower than 0.1 mV/min was reached in less than 5 min of first contact with solution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.2c01728DOI Listing

Publication Analysis

Top Keywords

potentiometric sensing
8
symmetric setup
8
potential drift
8
ion-selective electrodes
8
asymmetric system
8
electrodes
6
potential
6
unconditioned symmetric
4
symmetric solid-contact
4
solid-contact electrodes
4

Similar Publications

5-Hydroxyindoleacetic acid (5-HIAA), a vital metabolite of serotonin (5-HT), is crucial for understanding metabolic pathways and is implicated in various mental disorders. In situ monitoring of 5-HIAA is challenging due to the lack of affinity ligands and issues with electrochemical fouling. We present an advanced sensing approach that integrates customizable molecular imprinting polymer (MIP) with self-driven galvanic redox potentiometry (GRP) for precise, real-time in vivo monitoring of 5-HIAA.

View Article and Find Full Text PDF

A paper-based potentiometric sensor integrated with a polymeric hydrogel has been developed for sodium ion (Na) determination in human urine. The construction of an all-solid-state ion selective electrode (s-ISE) and an all-solid-state reference electrode (s-RE) on a photo paper substrate was achieved using an inkjet printing method. For s-ISE fabrication, carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) were printed on the substrate as a nanocomposite solid contact.

View Article and Find Full Text PDF

Print-Light-Synthesis of ruthenium oxide thin film electrodes for electrochemical sensing applications.

Bioelectrochemistry

January 2025

University of Bologna, Department of Industrial Chemistry "Toso Montanari", Center of Chemical Catalysis-C(3), Via Piero Gobetti 85, 40129 Bologna, Italy. Electronic address:

Print-Light-Synthesis (PLS) combines the inkjet printing of a ruthenium precursor ink with the simultaneous photo-induced generation of ruthenium oxide films. During PLS, inkjet-printing generates on conductive as well as insulating substrates micrometer-thin reaction volumes that contain with high precision defined precursor loadings. Upon direct UV light irradiation, the Ru precursor converts to RuO while all other ink components escape in the gas phase.

View Article and Find Full Text PDF

A sandwich electrochemical immunosensor was proposed for the sensitive detection of protective antigen ( PA) toxin based on cadmium sulphide nanocrystals (CdS NCs) and polypyrrole-gold nanoparticle-modified multiwalled carbon nanotubes (PPy-AuNPs/MWCNTs). Herein, PPy-AuNPs/MWCNTs were used as a biocompatible and conducting matrix for immobilization of rabbit anti-PA antibody [RαPA antibody, capturing antibody (Ab1)] and to facilitate excellent electrical conductivity. PPy-AuNPs/MWCNTs were synthesized through a one-step chemical reaction of pyrrole and Au on the surface of MWCNTs.

View Article and Find Full Text PDF

DNA can be readily amplified through replication, enabling the detection of a single-target copy. A comparable performance for proteins in immunoassays has yet to be fully assessed. Surface-plasmon-resonance (SPR) serves as a probe capable of performing assays at concentrations typically around 10⁻⁹ molar.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!