A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Untargeted LC-MS/MS-Based Metabolomic Profiling for the Edible and Medicinal Plant Under Different Levels of Cadmium Stress. | LitMetric

Untargeted LC-MS/MS-Based Metabolomic Profiling for the Edible and Medicinal Plant Under Different Levels of Cadmium Stress.

Front Plant Sci

Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China.

Published: July 2022

, a medicinal and edible plant, has been extensively applied to treat cardiovascular diseases and chronic hepatitis. Cadmium (Cd) affects the quality of , posing serious threats to human health. To reveal the metabolic mechanisms of 's resistance to Cd stress, metabolite changes in roots treated with 0 (CK), 25 (T1), 50 (T2) and 100 (T3) mg kg Cd by liquid chromatography coupled to mass spectrometry (LC-MS/MS) were investigated. A total of 305 metabolites were identified, and most of them were amino acids, organic acids and fatty acids, which contributed to the discrimination of CK from the Cd-treated groups. Among them, mainly upregulated o-tyrosine, chorismate and eudesmic acid in resistance to 25 mg kg Cd; DL-tryptophan, L-aspartic acid, L-proline and chorismite in resistance to 50 mg kg Cd; and L-proline, L-serine, L-histidine, eudesmic acid, and rosmarinic acid in resistance to 100 mg kg Cd. It mainly downregulated unsaturated fatty acids (e.g., oleic acid, linoleic acid) in resistance to 25, 50, and 100 mg kg Cd and upregulated saturated fatty acids (especially stearic acid) in resistance to 100 mg kg Cd. Biosynthesis of unsaturated fatty acids, isoquinoline alkaloid, betalain, aminoacyl-tRNA, and tyrosine metabolism were the significantly enriched metabolic pathways and the most important pathways involved in the Cd resistance of . These data elucidated the crucial metabolic mechanisms involved in Cd resistance and the crucial metabolites that could be used to improve resistance to Cd stress in medicinal plant breeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9366474PMC
http://dx.doi.org/10.3389/fpls.2022.889370DOI Listing

Publication Analysis

Top Keywords

fatty acids
16
acid resistance
16
resistance 100
12
resistance
9
medicinal plant
8
stress medicinal
8
metabolic mechanisms
8
resistance stress
8
eudesmic acid
8
unsaturated fatty
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!