Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Eutrophication and excessive algal growth pose a threat on aquatic organisms and the health of the public, environment, and the economy. Understanding what drives excessive algal growth can inform mitigation measures and aid in advance planning to minimize impacts. We demonstrate how simulated data from weather, hydrological, and agroecosystem numerical prediction models can be combined with machine learning (ML) to assess and predict Chlorophyll (Chl ) concentrations, a proxy for lake eutrophication and algal biomass. The study area is Lake Erie for a 16-year period, 2002-2017. A total of 20 environmental variables from linked and coupled physical models are used as input features to train the ML model with Chl observations from 16 measuring stations. Included are meteorological variables from the Weather Research and Forecasting (WRF) model, hydrological variables from the Variable Infiltration Capacity (VIC) model, and agricultural management practice variables from the Environmental Policy Integrated Climate (EPIC) agroecosystem model. The consolidation of these variables is conducive to a successful prediction of Chl . Aside from the synergistic effects that weather, hydrology, and fertilizers have on eutrophication and excessive algal growth, we found that the application of different forms of both P and N fertilizers are highly ranked for the prediction of Chl concentration. The developed ML model successfully predicts Chl with a coefficient of determination of 0.81, bias of -0.12 μg/l and RMSE of 4.97 μg/l. The developed ML-based modeling approach can be used for impact assessment of agriculture practices in a changing climate that affect Chl concentrations in Lake Erie.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364922 | PMC |
http://dx.doi.org/10.1016/j.jglr.2021.09.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!